Paradoja de Olbers

La paradoja de Olbers en acción. A medida que se consideran las estrellas situadas en capas y capas más lejanas a la tierra el cielo debería verse más y más luminoso.

La paradoja de Olbers o problema de Olbers, formulada por el astrónomo alemán Heinrich Wilhelm Olbers en 1823, y anteriormente mencionada por Johannes Kepler en 1610 y por Chéseaux en el siglo XVIII, es la afirmación paradójica de que en un universo estático e infinito el cielo nocturno debería ser totalmente brillante sin regiones oscuras o desprovistas de luz.

Exposición del problema

"Noche estrellada", de Vincent van Gogh.
Ilustración del decaimiento de la luminosidad de una estrella. Las líneas representan el flujo que emana de una fuente puntual. La densidad de líneas de flujo disminuye a medida que aumenta la distancia. Sin embargo el número de fuentes puntuales o estrellas sobre una esfera debería aumentar en la misma proporción, según Olbers.

Si el universo se supone infinito, sin un principio y conteniendo un número infinito de estrellas luminosas uniformemente distribuidas, entonces el número de estrellas a una distancia R debería ser proporcional a la superficie de una esfera de ese radio, es decir, N ~ 4πR2. Como la intensidad de la luz sigue una ley de la inversa del cuadrado, entonces la luminosidad aportada por sucesivas capas de estrellas debería ser independiente del radio R de la capa, ya que el área aparente de una estrella disminuye con el cuadrado de la distancia y el número de estrellas esperado aumenta con el cuadrado de la distancia. Así, cada punto en el cielo debería ser tan brillante como la superficie de una estrella. En otras palabras, cada línea visual partiendo de la tierra debería acabar terminando en la superficie de una estrella. Como el cielo contiene regiones negras sin brillo se sigue que alguna de las hipótesis es incorrecta (ya que el argumento general de Olbers se considera correcto). Olbers se sorprendió al descubrir que su cálculo implicaba que la temperatura en nuestro planeta debería ser de 5537,78 grados Celsius); debería recibirse luz equivalente a 50 000 veces la del Sol en el cenit, todo estaría fundido como en un volcán.[1]

Debe aclararse que para que las estrellas parezcan "uniformemente distribuidas" en el espacio, deben estar también uniformemente distribuidas en el tiempo, porque cuanto más lejos se observa, más antiguo es lo que se observa. A una escala infinita, significa que el universo debe tener una edad infinita sin cambios radicales en la naturaleza de las estrellas durante ese tiempo.

Kepler vio esto como un argumento para un universo finito, o al menos para un número finito de estrellas, pero esto no es convincente por lo que se discute a continuación.

Comentarios

Un modo de explicarlo es que el universo no sea transparente, y que la luz de estrellas distantes sea bloqueada por estrellas oscuras intermedias o absorbida por polvo o gas, de modo que solo la luz proveniente de una distancia finita pueda llegar al observador. A pesar de ello, esta explicación no resuelve la paradoja, ya que de acuerdo con la primera ley de la termodinámica, la energía debe conservarse, de modo que la materia intermedia se calentaría y liberaría la energía (posiblemente en otra longitud de onda). Esto daría como resultado, otra vez, la recepción uniforme de radiación desde todas las direcciones, lo que no se observa.

Otra explicación ofrecida señala el hecho de que cada estrella contiene una cantidad finita de materia, por lo que solo brilla por un periodo finito de tiempo, después del cual termina su combustible. A pesar de ello, la paradoja se mantiene si uno supone que las estrellas se crean constantemente en un lugar aleatorio del universo, brillan por un periodo limitado de tiempo, y desaparecen.

Other Languages