Paradoja de Arrow

En teoría de la decisión, la paradoja de Arrow o teorema de imposibilidad de Arrow establece que cuando los votantes tienen tres o más alternativas, no es posible diseñar un sistema de votación que permita reflejar las preferencias de los individuos en una preferencia global de la comunidad de modo que al mismo tiempo se cumplan ciertos criterios "racionales":

  • Dominio no restringido.
  • Ausencia de un "dictador", es decir, de una persona que tenga el poder para cambiar las preferencias del grupo.
  • Eficiencia de Pareto
  • Independencia de alternativas irrelevantes.

Este teorema fue dado a conocer y demostrado por primera vez por el Premio Nobel de Economía Kenneth Arrow en su tesis doctoral Social choice and individual values, y popularizado en su libro del mismo nombre editado en 1951. El artículo original, A Difficulty in the Concept of Social Welfare, fue publicado en The Journal of Political Economy,[1] en agosto de 1950.

Descripción del teorema

En el campo microeconómico se estudia el comportamiento de los agentes económicos individuales partiendo de la base de que son racionales. Por racionalidad se quiere decir que las preferencias que de los agentes tienen son transitivas, completas y reflexivas.

Podemos decir que las preferencias son transitivas cuando, si la situación es preferida a la situación , y la situación es preferida a la situación , entonces la situación es preferida a la situación ; esta característica de la relación de preferencia permite establecer un orden preferencial en las diferentes alternativas que se nos presentan.

El problema se plantea cuando pasamos del nivel de las preferencias individuales a las preferencias o decisiones sociales, esto es, cuando intentamos construir una regla que permita establecer un orden entre las distintas alternativas, no ya a nivel individuo, sino a nivel social (grupal). En este caso, se pueden dar relaciones circulares donde desaparece la transitividad de la relación de preferencia (intransitividad).

Un caso de intransitividad se da, por ejemplo, cuando un conjunto de tres votantes elige entre tres alternativas, utilizando la elección por mayoría simple como método de votación. El votante , prefiere la opción sobre la y sobre , el votante prefiere a sobre y a sobre , el votante prefiere a sobre y a sobre . En esta situación ¿cuál es la escala de preferencia del conjunto? Es un ejemplo de lo que se conoce como la paradoja de Condorcet.

En este supuesto, los órdenes de preferencias individuales son:

A) (por transitividad)

B) (por transitividad)

C) (por transitividad)

Así, mediante la regla de la mayoría, tendríamos las siguientes preferencias del conjunto:

1) (votantes y )

2) (votantes y )

3) (votantes y )

Ahora bien, por regla de transitividad, tenemos también , lo que nos lleva a una situación contradictoria.

La pregunta que se formula la teoría de la 'elección social' es: ¿bajo qué condiciones resulta posible que las preferencias agregadas de un conjunto de individuos sean racionales (reflexivas, transitivas y completas), al tiempo que satisfacen determinadas condiciones axiológicas?

¿Es posible una función que agregue todas las preferencias individuales y cumpla un mínimo de condiciones que podamos considerar como democráticas? Arrow condiciona la regla de agregación no sólo a criterios racionales (transitividad, completitud, reflexividad), sino también a dos criterios que podemos denominar "democráticos": el principio de no-dictadura (no existen individuos que determinen la ordenación de las preferencias sociales con independencia de las preferencias del resto) y el principio de no-imposición (la ordenación de las preferencias sociales depende de las ordenaciones individuales y no se impone por otros criterios, como pueden ser la tradición o el azar).

El resultado del Teorema de Arrow concluye que no existe ninguna regla de agregación de preferencias que tenga tales propiedades normativas deseables (que la agregación resulte en preferencias racionales, que la regla y los resultados sean válidos para cualquier configuración de preferencias, que no vayan contra la unanimidad y que la preferencia social entre dos alternativas sea independiente de la existencia o no de terceras alternativas), a no ser que las preferencias sean el fiel reflejo de las preferencias de algún individuo, denominado "dictador".

Other Languages