Operador diferencial

Una función armónica definida en un anillo . Funciones armónicas son exactamente las funciones que se encuentran en el núcleo del operador de Laplace, un operador diferencial importante.

En matemáticas, un operador diferencial es un operador lineal definido como una función del operador de diferenciación. Ayuda, como una cuestión de notación, considerar a la diferenciación como una operación abstracta, que acepta una función y regresa otra.

Caso con una variable

El uso más común del operador diferencial es realizar la derivada en sí misma. Las notaciones comunes de este operador incluyen:

Las dos primeras se usan fundamentalmente cuando se quiere hacer explícita la variable respecto a la cual se toman las derivadas ordinarias, la última forma sólo se usa cuando por el contexto está claro cuál es la variable respecto a la que se deriva (sin necesidad de explicitarla). Las primeras derivadas se toman como arriba, pero para las derivadas de orden superior, las n-ésimas, son útiles los siguientes cambios:

Operadores lineales ordinarios

  • El uso y la creación de la notación para la derivada k-ésima se debe a Oliver Heaviside, quien consideraba los operadores diferenciales lineales ordinarios de la forma:

Donde:

son funciones definidas sobre el dominio .
denota a las funciones diferenciables con continuidad en el dominio
denota a las funciones continuas en el mismo dominio.

en su estudio de las ecuaciones diferenciales.

  • La derivada simple es, como se ha dicho, un operador diferencial lineal sobre el conjunto de funciones reales de variable real.
  • Una ecuación diferencial ordinaria se puede expresar mediante un operador lineal en la forma , donde es la función incógnita.

Propiedades de los operadores diferenciales

en donde f y g son funciones y a es una constante.
  • Cualquier polinomio en D con funciones como coeficientes es también un operador diferencial. También se pueden componer operadores diferenciales con la regla

  • Esta última propiedad dota al conjunto de los operadores lineales, sobre un cierto espacio de funciones reales, de estructura de espacio vectorial sobre y de módulo izquierdo sobre el mismo conjunto de funciones. Eso último implica a su vez que el conjunto de operadores constituyen un álgebra asociativa.
  • Se requiere de algo de cuidado: primero, cualesquiera coeficientes de función en el operador D2 deben ser diferenciables tantas veces como requiera la aplicación de D1. Para obtener un anillo de dichos operadores se debe suponer que se utilizan derivadas de todos los órdenes. Segundo, este anillo no debe ser conmutativo: un operador gD no es el mismo en general que Dg. De hecho se tiene por ejemplo la relación básica en mecánica cuántica: DxxD = 1.
  • El subanillo de operadores que son polinomios en D con coeficientes constantes es, en contraste, conmutativo. Puede ser caracterizado de otra forma: consiste en los operadores de traslación invariantes.

Operador inverso

Dado un operador diferencial lineal sobre un espacio de funciones reales de una sola variable real con condiciones de contorno homogénea, en el que todas las funciones que intervienen son continuas, existe un operador inverso que es un operador integral.

Dicho operador inverso vienen dado por la función de Green. Explicitémoslo considerando una ecuación diferencial de orden n sin constante :

En este caso existe un operador integral dado por:

Tal que se cumple:

Other Languages