Número p-ádico

Para cada número primo p, los números p-ádicos forman una extensión de cuerpos de los números racionales descritos por primera vez por Kurt Hensel en 1897. Fueron usados en la resolución de varios problemas en Teoría de números, a menudo con el principio local-global de Helmut Hasse , que dice, más o menos, que una ecuación puede resolverse en los números racionales si y sólo si se puede resolver en los números reales y en los números p-ádicos para todo primo p. El espacio Qp de todos los números p-ádicos tiene la propiedad topológica, deseable, de completitud, que nos permite el desarrollo del Análisis p-ádico, similar al Análisis real.

Motivación

Si fijamos un número primo p, entonces cualquier entero puede escribirse como una expansión p-ádica (que usualmente se dice que escribimos el número en "base p") de la forma:

donde los ai son enteros en el conjunto {0,...,p-1}.

Por ejemplo, la "2-ádica" o expansión binaria de 35 es 1·25 + 0·24 + 0·23 + 0·22 + 1·21 + 1·20, escrita a menudo en al notación más breve: 1000112.

La forma familiar de generalizar esta descripción al dominio mayor de los racionales (y, finalmente, a los reales) es incluir sumas de la forma siguiente:

Usando la familiar métrica euclídea podemos dar un significado concreto a esas sumas y que se basa en las sucesiones de Cauchy. Así, por ejemplo, 1/3 se puede expresar en base 5 como el límite de la sucesión 0.1313131313...5. En esta formulación los enteros son justo aquellos números que pueden ser representados de manera que ai = 0 para todo i<0.

Como alternativa, si extendemos las expansiones p-ádicas permitiendo sumas infinitas de la forma donde k será cierto entero (no necesariamente positivo), obtenemos el cuerpo Qp de los números p-ádicos. Los números p-ádicos para los cuales ai = 0 para todo i<0 son llamados también enteros p-ádicos. Estos enteros p-ádicos forman un subanillo de Qp denotado Zp.

Podemos ver estos enteros, intuitivamente, como de cierta forma "opuesta" a la que se nos presenta con las expansiones p-ádicas que se extienden hacia la derecha, como sumas de potencias cada vez menores, negativas, de la base p (como hemos visto para los números reales que hemos descrito más arriba ), ya que esos enteros p-ádicos pueden tener expansiones p-ádicas hacia la izquierda de forma similar. Por ejemplo, la expansión p-ádica de 1/3 en base 5 es el límite de la sucesión ..313131325. Informalmente, podemos ver que multiplicando esta "suma infinita" por 3 en base 5 da ...00000015. Como en esta expansión de 1/3 no hay potencias negativas de 5 (esto es, no hay números a la derecha del la coma decimal), vemos que 1/3 es un entero p-ádico en base 5.

El principal problema técnico es el de definir una noción buena de suma infinita que dote de sentido a tales expresiones - que requiere la introducción de la noción de métrica p-ádica. Abajo presentaremos dos soluciones a este problema, diferentes pero equivalentes.

Other Languages
беларуская: P-адычны лік
български: P-адично число
English: P-adic number
français: Nombre p-adique
עברית: מספר p-אדי
italiano: Numero p-adico
日本語: P進数
한국어: P진수
Nederlands: P-adisch getal
português: Número p-ádico
svenska: P-adiska tal
Türkçe: P-sel sayılar
українська: P-адичне число
Tiếng Việt: Số p-adic
中文: P進數
文言: 進數
粵語: P進數