Número e

Diez mil primeras cifras decimales del número en formato cartel.

La constante matemática es uno de los más importantes números reales que aparece en diversas áreas de la matemática.[1] Es aproximadamente igual a 2.71828 y se relaciona con muchos interesantes resultados, como ser la base de los logaritmos naturales y su aparición en el estudio del interés compuesto.

El número , conocido en ocasiones como número de Euler o constante de Napier, fue reconocido y utilizado por primera vez por el matemático escocés John Napier, quien introdujo el concepto de logaritmo en el cálculo matemático.

Juega un rol importante en el cálculo y en el análisis matemático, en la definición de la función más importante de la matemática,[2] la función exponencial, así como lo es de la geometría y el número del análisis complejo y del álgebra.[3]

El número , al igual que el número y el número áureo (φ), es un número irracional, no expresable mediante una razón de dos números enteros; o bien, no puede ser representado por un numeral decimal exacto o un decimal periódico. Además, también como , es un número trascendente, es decir, que no puede ser raíz de ninguna ecuación algebraica con coeficientes racionales[4] .

El valor de truncado a sus primeras cifras decimales es el siguiente:

Lista de númerosNúmeros irracionales
ζ(3)235φαeπδ
Binario 10.10110111111000010101…
Decimal 2.718281828459045235360…
Hexadecimal 2.B7E151628AED2A6B…
Fracción continua
Nótese que la fracción continua no es periódica.

Historia

Leonhard Euler popularizó el uso de la letra e para representar la constante; además fue el descubridor de numerosas propiedades referentes a ella.

A diferencia de , la introducción del número en la matemática es relativamente reciente, lo cual tiene sentido si se considera que este último tuvo un origen analítico y no geométrico, como el primero. En las palabras de Eli Maor[5] ,

The story of has been extensively told, no doubt because its history goes back to ancient times, but also because much of it can be grasped without a knowledge of advanced mathematics. Perhaps no book did better than Petr Beckmann's A History of Pi, a model of popular yet clear and precise exposition. The number e fared less well. Not only is it of more modern vintage, but its history is closely associated with the calculus, the subject that is traditionally regarded as the gate to "higher" mathematics.

La historia de ha sido extensivamente contada, sin duda no sólo porque su historia se trae desde tiempos antiguos, sino también porque mucho de él puede ser entendido sin un conocimiento avanzado de las matemáticas. Quizá ningún libro fue mejor que Historia de Pi de Petr Beckmann, un modelo de exposición popular pero también claro y preciso. Al número e no le fue tan bien. No sólo es de una época más moderna, sino también que su historia está cercanamente asociada con el cálculo, el tema que es tradicionalmente visto como la puerta hacia matemáticas "más elevadas".

Las primeras referencias a la constante fueron publicadas en 1618 en la tabla en un apéndice de un trabajo sobre logaritmos de John Napier.[6] No obstante, esta tabla no contenía el valor de la constante, sino que era simplemente una lista de logaritmos naturales calculados a partir de ésta. Se cree que la tabla fue escrita por William Oughtred. Unos años más tarde, en 1624, se ve nuevamente involucrado en la literatura matemática, aunque no del todo. Ese año, Briggs dio una aproximación numérica a los logaritmos en base 10, pero no menciono al número explícitamente en su trabajo.

La siguiente aparición de es algo dudosa. En 1647, Saint-Vincent calculó el área bajo la hipérbola rectangular. Si reconoció la conexión con los logaritmos es una cuestión abierta a debate, e incluso si lo hizo, no hubo razón para que tratara con explícitamente. Quien si comprendió la relación entre la hipérbola rectangular y el logaritmo fue Huygens allá por 1661, al estudiar el problema del área bajo la curva . El número es aquel valor de abscisa a tomar para que el área bajo esta curva a partir de 1 sea igual a 1. Esta es la propiedad que hace que sea la base de los logaritmos naturales, y si bien no era comprendida del todo por los matemáticos de aquel entonces, de a poco iban acercándose a su comprensión.

Sin embargo, y tal vez inesperadamente, no es a través de los logaritmos que es descubierto, sino del estudio del interés compuesto, problema abordado por Jacob Bernoulli en 1683. Si se invierte una Unidad Monetaria (que abreviaremos en lo sucesivo como UM) con un interés del 100% anual y se pagan los intereses una vez al año, se obtendrán 2 UM. Si se pagan los intereses 2 veces al año, dividiendo el interés entre 2, la cantidad obtenida es 1 UM multiplicado por 1,5 dos veces, es decir 1 UM x 1,502 = 2,25 UM. Si dividimos el año en 4 períodos (trimestres), al igual que la tasa de interés, se obtienen 1 UM x 1,254 = 2,4414... En caso de pagos mensuales el monto asciende a 1 UM x = 2,61303...UM. Por tanto, cada vez que se aumenta la cantidad de períodos de pago en un factor de n (que tiende a crecer sin límite) y se reduce la tasa de interés en el período, en un factor de , el total de unidades monetarias obtenidas estará dado por la siguiente expresión:

Bernoulli utilizó el teorema del binomio para mostrar que dicho límite se encontraba entre 2 y 3. Se puede considerar esta la primera aproximación encontrada para . Incluso si aceptamos esta como una definición de , seria la primera vez que un número se define como un proceso de límite. Con seguridad, Bernoulli no reconoció ninguna conexión entre su trabajo y los logaritmos. De aquí proviene la definición que se da de en finanzas, que expresa que este número es el límite de una inversión de 1 UM con una tasa de interés al 100% anual compuesto en forma continua. En forma más general, una inversión que se inicia con un capital C y una tasa de interés anual R, proporcionará UM con interés compuesto.

El primer uso conocido de la constante, representado por la letra b, fue en una carta de Gottfried Leibniz a Christiaan Huygens en 1690 y 1691. Leonhard Euler comenzó a utilizar la letra e para identificar la constante en 1727, y el primer uso de en una publicación fue en Mechanica, de Euler, publicado en 1736. Mientras que en los años subsiguientes algunos investigadores usaron la letra c, fue la más común, y finalmente se convirtió en la terminología usual. Euler realizó varios aportes en relación a en los años siguientes, pero no fue hasta 1748 cuando publicó su Introductio in Analysin infinitorum que dio un tratamiento definitivo a las ideas sobre . Allí mostró que

y dio una aproximación para de 18 cifras decimales, sin mostrar cómo la obtuvo. También dio su expresión como fracción continua reconociendo el patrón que sigue dicha expresión. Fue esta caracterización la que le sirvió de base para concluir que es un número irracional, y la mayor parte de la comunidad acepta que Euler fue el primero en probar esta propiedad.

La pasión que guió a mucha gente a calcular más y más cifras decimales de nunca pareció replicarse de la misma manera para . Sin embargo, algunos se embarcaron en la tarea de calcular su expansión decimal y el primero en contribuir con esto fue William Shanks en 1854. Vale la pena destacar que Shanks fue un entusiasta aún mayor del cálculo de los decimales de . James Whitbread Lee Glaisher mostró que los primeros 137 lugares de Shanks para el cálculo de eran correctos, pero encontró un error que, luego de corregido por el propio Shanks, arrojo cifras decimales de e hasta el lugar 205. De hecho, se necesitan alrededor de 120 términos de 1 + 1/1! + 1/2! + 1/3! + ... para obtener 200 decimales.

Expansiones decimales aún mayores siguieron con los trabajos de Boorman en 1884, quien calculó 346 lugares y halló que su cómputo coincidía con el de Shanks hasta el lugar 187, pero luego divergían. En 1887 Adams estimó el logaritmo de en base 10 con 272 cifras exactas.

En 1873, Charles Hermite (1822-1905) logró demostrar que es trascendente, a dicho logro llegó usando un polinomio, conseguido con ayuda de fracciones continuas, empleadas, anteriormente, por Lambert. David Hilbert — también Karl Weierstrass y otros — propusieron, posteriomente, variantes y modificaciones de las primeras demostraciones.[7]

Other Languages
Afrikaans: E (wiskunde)
aragonés: Numero e
العربية: ه (رياضيات)
azərbaycanca: E (ədəd)
беларуская: Лік e
български: Неперово число
brezhoneg: E (niver)
bosanski: E (broj)
català: Nombre e
čeština: Eulerovo číslo
dansk: E (tal)
Esperanto: E (matematiko)
eesti: E (arv)
euskara: E (zenbakia)
فارسی: عدد e
français: E (nombre)
galego: Número e
hrvatski: Broj e
Հայերեն: E թիվ
Bahasa Indonesia: E (konstanta matematika)
日本語: ネイピア数
ქართული: E (რიცხვი)
қазақша: E саны
한국어: E (상수)
Latina: Numerus e
lumbaart: Nümar e
lietuvių: Skaičius e
македонски: Е (број)
Bahasa Melayu: E (pemalar)
Nederlands: E (wiskunde)
norsk nynorsk: E i matematikk
norsk bokmål: E (matematikk)
português: Número de Euler
русский: E (число)
srpskohrvatski / српскохрватски: Broj e
slovenčina: Eulerovo číslo
shqip: Numri e
српски / srpski: Број е
svenska: E (tal)
Türkçe: E sayısı
українська: E (число)
Tiếng Việt: Số e