Número de Liouville

En teoría de números, un número de Liouville es un número real x con la propiedad de que, para cualquier entero positivo n, existen otros dos enteros p y q tales que q > 1 y también que satisfacen:

0 < |xp/q| < 1/qn.

Gracias a las fracciones continuas sabemos que todo número real puede aproximarse por infinitos racionales p/q que verifican 0 < |xp/q| < 1/q2. Los números de Liouville son aquellos para los cuales el 2 en el exponente de q puede ser cambiado por cualquier natural n, o sea que de alguna manera son los "mejor aproximados" por racionales.

Algunas propiedades

  • Todo número de Liouville es irracional.
  • Los números de Liouville son trascendentes.
  • El conjunto de números de Liouville tiene medida de Lebesgue cero.
  • El conjunto de números de Liouville puede obtenerse como una intersección numerable de abiertos densos en .[1] Como consecuencia de esto (utilizando el teorema de Baire y que los reales forman un espacio métrico completo) se deduce que este conjunto es no numerable y denso en los reales.
Other Languages