Número de Friedman

En matemáticas, un número de Friedman es un número entero que, dada una base, es el resultado de una expresión usando sus propios dígitos en combinación con cualquiera de las cuatro operaciones aritméticas (+, -, ×, ÷) y en ocasiones con potencias. Por ejemplo, 347 es un número de Friedman ya que 347 = 73 + 4. Los primeros números de Friedman en base 10 son

25, 121, 125, 126, 127, 128, 153, 216, 289, 343, 347, 625, 688, 736, 1022, 1024, 1206, 1255, 1260, 1285, 1296, 1395, 1435, 1503, 1530, 1792, 1827, 2048, 2187, 2349, 2500, 2501, 2502, 2503, 2504, 2505, 2506, 2507, 2508, 2509, 2592, 2737, 2916, 3125, 3159, ... ((sucesión A036057 en OEIS))

Reglas

Los paréntesis pueden ser usados en las expresiones, pero únicamente para alterar la precedencia de operadores. Por ejemplo, 1024 = (4 - 2)10. Si se permiten paréntesis sin operadores, resultaría en números de Friedman triviales, como 24 = (24). Los ceros a la izquierda no se usan, ya que obtendríamos, por ejemplo 001729 = 1700 + 29, que también es un número trivial de Friedman.

De hecho, se conocen dos números pandigitales de Friedman sin ceros: 123456789 = ((86 + 2 * 7)5 - 91) / 34, y 987654321 = (8 * (97 + 6/2)5 + 1) / 34, ambos descubiertos por Mike Reid y Philippe Fondanaiche.

Partiendo de que todas las potencias de 5 parecen ser números de Friedman, podemos hallar cadenas consecutivas de números de Friedman. El mismo Friedman da el ejemplo de 250068 = 5002 + 68, que puede ser fácilmente deducible del rango de números consecutivos de Friedman del 250010 al 250099.

Un número de Friedman simpático es tal que los dígitos en la expresión pueden ser reordenados para que se encuentren en el mismo orden de aparición que en el propio número. Por ejemplo, podemos reordenar 127 = 27 - 1 como 127 = -1 + 27. Todas las expresiones para esta clase de números menores de 10000 involucran adiciones y substracciones. Los primeros números de esta clase son:

127, 343, 736, 1285, 2187, 2502, 2592, 2737, 3125, 3685, 3864, 3972, 4096, 6455, 11264, 11664, 12850, 13825, 14641, 15552, 15585, 15612, 15613, 15617, 15618, 15621, 15622, 15623, 15624, 15626, 15632, 15633, 15642, 15645, 15655, 15656, 15662, 15667, 15688, 16377, 16384, 16447, 16875, 17536, 18432, 19453, 19683, 19739 ((sucesión A080035 en OEIS))

Fondanaiche cree que el menor de estos números tal que todas sus cifras son iguales es 99999999 = (9 + 9/9)9-9/9 - 9/9. Brandon Owens demostró que estos números, cuando tienen más de 24 cifras son números de Friedman simpáticos en cualquier base.

Other Languages
slovenščina: Friedmanovo število
svenska: Friedmantal
українська: Числа Фрідмана
中文: 傅利曼數