Núcleo atómico

Representación aproximada del átomo de Helio. en el núcleo los protones están representados en rojo y los neutrones en azul. En la realidad el núcleo también es simétricamente esférico.

El núcleo atómico es la parte central de un átomo, tiene carga positiva, y concentra más del 99,9% de la masa total del átomo.

Está formado por protones y neutrones (denominados nucleones) que se mantienen unidos por medio de la interacción nuclear fuerte, la cual permite que el núcleo sea estable, a pesar de que los protones se repelen entre sí (como los polos iguales de dos imanes). La cantidad de protones en el núcleo ( número atómico), determina el elemento químico al que pertenece. Los núcleos atómicos no necesariamente tienen el mismo número de neutrones, ya que átomos de un mismo elemento pueden tener masas diferentes, es decir son isótopos del elemento.

La existencia del núcleo atómico fue deducida del experimento de Rutherford, donde se bombardeó una lámina fina de oro con partículas alfa, que son núcleos atómicos de helio emitidos por rocas radiactivas. La mayoría de esas partículas traspasaban la lámina, pero algunas rebotaban, lo cual demostró la existencia de un minúsculo núcleo atómico.

Historia

El descubrimiento de los electrones fue la primera indicación de la estructura interna de los átomos. A comienzos del siglo XX el modelo aceptado del átomo era el de JJ Thomson "pudín de pasas" modelo en el cual el átomo era una gran bola de carga positiva con los pequeños electrones cargados negativamente incrustado dentro de la misma. Por aquel entonces, los físicos habían descubierto también tres tipos de radiaciones procedentes de los átomos : alfa, beta y radiación gamma. Los experimentos de 1911 realizados por Lise Meitner y Otto Hahn, y por James Chadwick en 1914 mostraron que el espectro de decaimiento beta es continuo y no discreto. Es decir, los electrones son expulsados del átomo con una gama de energías, en vez de las cantidades discretas de energía que se observa en rayos gamma y decaimiento alfa. Esto parecía indicar que la energía no se conservaba en estos decaimiento. Posteriormente se descubrió que la energía sí se conserva, con el descubrimiento de los neutrinos.

En 1906 Ernest Rutherford publicó "El retraso de la partícula alfa del radio cuando atraviesa la materia", en Philosophical Magazine (12, p. 134-46). Hans Geiger amplió este trabajo en una comunicación a la Royal Society (Proc. Roy. Soc. 17 de julio de 1908) con experimentos y Rutherford se había hecho pasar aire a través de las partículas α, papel de aluminio y papel de aluminio dorado. Geiger y Marsden publicaron trabajos adicionales en 1909 (Proc. Roy. Soc. A82 p. 495-500) y ampliaron aún más el trabajo en la publicación de 1910 por Geiger (Proc. Roy. Soc. 1 de febrero de 1910). En 1911-2 Rutherford explicó ante la Royal Society los experimentos y propuso la nueva teoría del núcleo atómico. Por lo que se considera que Rutherford demostró en 1911 la existencia del núcleo atómico.[1]

Por esas mismas fechas ( 1909) Ernest Rutherford realizó un experimento en el que Hans Geiger y Ernest Marsden, bajo su supervisión dispararon partículas alfa (núcleos de helio) en una delgada lámina de oro. El modelo atómico de Thomson predecía que la de las partículas alfa debían salir de la lámina con pequeñas desviaciones de sus trayectorias. Sin embargo, descubrió que algunas partículas se dispersan a grandes ángulos, e incluso completamente hacia atrás en algunos casos. Este descubrimiento en 1911, llevó al modelo atómico de Rutherford, en que el átomo está constituido por protones y electrones. Así, el átomo del nitrógeno-14 estaría constituido por 14 protones y 7 electrones.[1]

El modelo de Rutherford funcionó bastante bien durante muchos años. Se pensaba que la repulsión de las cargas positivas entre protones era solventada por los electrones -con carga negativa- interpuestos ordenadamente en medio, por lo que el electrón era considerado como un "cemento nuclear".[2]

En 1930 Wolfgang Pauli no pudo asistir a una reunión en Tubinga, y en su lugar envió una carta famoso con la clásica introducción "Queridos Señoras y señores radiactivos ". En su carta Pauli sugirió que tal vez existía una tercera partícula en el núcleo, que la bautizó con el nombre de " neutrones". Sugirió que era más ligero que un electrón y sin carga eléctrica, y que no interactuaba fácilmente con la materia (y por eso todavía no se le había detectado). Esta hipótesis permitía resolver tanto el problema de la conservación de la energía en la desintegración beta y el espín de nitrógeno - 14, la primera porque los neutrones llevaban la energía no detectada y el segundo porque un electrón extra se acoplaba con el electrón sobrante en el núcleo de nitrógeno - 14 para proporcionar un espín de 1. Enrico Fermi redenominó en 1931 los neutrones de Pauli como neutrinos (en italiano pequeño neutral) y unos treinta años después se demostró finalmente que un neutrinos realmente se emiten en el decaimiento beta.

En 1932 James Chadwick se dio cuenta de que la radiación que de que había sido observado por Walther Bothe, Herbert L. Becker, Irène y Jean Frédéric Joliot-Curie era en realidad debido a una partícula que él llamó el neutrón. En el mismo año Dimitri Ivanenko sugirió que los neutrones eran, de hecho partículas de espín 1 / 2, que existían en el núcleo y que no existen electrones en el mismo, y Francis Perrin sugirió que los neutrinos son partículas nucleares, que se crean durante el decaimiento beta. Fermi publicó 1934 una teoría de los neutrinos con una sólida base teórica. En el mismo año Hideki Yukawa propuso la primera teoría importante de la fuerza para explicar la forma en que el núcleo mantiene junto.

Luego del descubrimiento del neutrón, por James Chadwick, Werner Heisenberg (que enunció años antes el principio de incertidumbre), indicó que los neutrones pueden ser parte del núcleo, y no así los electrones. Con esta teoría se resolvía totalmente el problema del spin que no coincidía, además de explicar todos los aspectos del comportamiento nuclear.[2]

Sin embargo, la nueva teoría traía consigo otro severo problema: con el modelo anterior, que incluía electrones como "cemento nuclear", se explicaba que los protones, todos con la misma carga positiva, permanecieran totalmente juntos, sin que saliesen disparados por la repulsión de cargas iguales. Sin embargo, con el modelo que incluye el neutrón, no había explicación alguna respecto a la forma en que en núcleo se mantiene unido y no explota de inmediato (es decir, ningún elemento debería existir, con la única excepción del hidrógeno). Para ejemplificar, la fuerza con la que se repelen dos protones a la distancia que están (una diezbillonésima de centímetro), es de aproximadamente 240 newtons, fuerza suficiente para elevar en el aire un objeto de algo más de 24 kilogramos (nótese la enormidad inimaginable de esa fuerza dado que estamos hablando de dos protones, cuya masa es de algo más de 10-27 kilogramos)[3]

La enorme dificultad que sufría la teoría se fue resolviendo gradualmente. En 1927, Heisenberg propuso el principio de incertidumbre, que indica que mientras mayor sea la precisión con que conozcamos la velocidad de una partícula, con menor precisión podremos conocer su posición.[4]

En 1930 Einstein dedujo a partir de este principio, por medios matemáticos, que si el principio es correcto, también es correcto otro tipo de indeterminación sobre la medición de la energía existente en un sistema cerrado. Mientras menor sea el lapso de tiempo en el cual se quiere saber la cantidad de energía del sistema, con menor precisión se la podrá medir.[3]

Al momento de sugerir el modelo de núcleo protón-neutrón, en 1932, Heisenberg sugirió también la existencia de un campo de fuerza que unía los protones, por medio de la existencia efímera de una partícula. La existencia de esta partícula sería posible sólo por el principio de incertidumbre, en la versión enunciada por Einstein.[5]

El físico japonés, Hideki Yukawa, entonces se puso a analizar las propiedades de la partícula propuesta por Heisenberg, y en 1935 describió esas propiedades con precisión. La partícula sólo podría existir un instante de unos  5 × 10-24 segundos, tiempo suficiente para que pueda ir de un protón a otro, pero no más allá del núcleo del átomo. La energía necesaria para la existencia de esta partícula en ese breve periodo se ajusta al principio de incertidumbre en la versión de Einstein.[5] Utilizando esas ecuaciones, la energía disponible en ese periodo sería de 20 pJ (pico julios,  2 × 10-11 J o  1,25 × 108  eV), lo que equivale a una partícula con una masa de 250 veces la del electrón.

Desde entonces hubo varios intentos de detectar esa partícula experimentalmente. Por supuesto que siendo una partícula que sólo existe un breve instante, y utilizando energía no disponible, sólo gracias al principio de incertidumbre, sería imposible de detectar, excepto si esa energía fuese proporcionada. Los rayos cósmicos -partículas que llegan del espacio a enormes velocidades- pueden proporcionar esa energía. En 1948, experimentando con rayos cósmicos en Bolivia, la partícula fue detectada por Cecil Frank Powell. La partícula fue llamada Pion.[6]

Other Languages
العربية: نواة الذرة
azərbaycanca: Atom nüvəsi
žemaitėška: Atuoma kondouls
беларуская: Атамнае ядро
беларуская (тарашкевіца)‎: Атамнае ядро
български: Атомно ядро
bosanski: Atomsko jezgro
català: Nucli atòmic
čeština: Atomové jádro
dansk: Atomkerne
Deutsch: Atomkern
Esperanto: Atomkerno
eesti: Aatomituum
euskara: Atomo nukleo
فارسی: هسته اتم
suomi: Atomiydin
français: Noyau atomique
Frysk: Atoomkearn
Gàidhlig: Niùclas
हिन्दी: नाभिक
hrvatski: Atomska jezgra
Kreyòl ayisyen: Nwayo
magyar: Atommag
Հայերեն: Միջուկ (ատոմ)
interlingua: Nucleo atomic
Bahasa Indonesia: Inti atom
íslenska: Frumeindakjarni
italiano: Nucleo atomico
日本語: 原子核
Basa Jawa: Inti Atom
қазақша: Атом ядросы
한국어: 원자핵
Kurdî: Navok
Limburgs: Atoamkaen
lietuvių: Atomo branduolys
latviešu: Atoma kodols
Basa Banyumasan: Nukleus
олык марий: Атом том
македонски: Атомско јадро
монгол: Атомын цөм
Bahasa Melayu: Nukleus atom
မြန်မာဘာသာ: နျူကလိယ
Nederlands: Atoomkern
norsk nynorsk: Atomkjerne
norsk bokmål: Atomkjerne
Novial: Nukleus
ਪੰਜਾਬੀ: ਪਰਮਾਣੂ ਨਾਭ
português: Núcleo atómico
Runa Simi: Iñuku huk'i
română: Nucleu atomic
русский: Атомное ядро
srpskohrvatski / српскохрватски: Atomsko jezgro
Simple English: Atomic nucleus
slovenčina: Atómové jadro
slovenščina: Atomsko jedro
српски / srpski: Атомско језгро
Seeltersk: Atomkääden
Basa Sunda: Inti atom
svenska: Atomkärna
Kiswahili: Kiini cha atomi
українська: Ядро атома
oʻzbekcha/ўзбекча: Atom yadrosi
Tiếng Việt: Hạt nhân nguyên tử
ייִדיש: אטאמקערן
中文: 原子核
Bân-lâm-gú: Goân-chú-hu̍t
粵語: 原子核