Movimiento de rotación

Rotación de la Tierra.

Rotación es el movimiento de cambio de orientación de un cuerpo o un sistema de referencia de forma que una línea (llamada eje de rotación) o un punto permanece fijo.

La rotación de un cuerpo se representa mediante un operador que afecta a un conjunto de puntos o vectores. El movimiento rotatorio se representa mediante el vector velocidad angular , que es un vector de carácter deslizante y situado sobre el eje de rotación. Cuando el eje pasa por el centro de masa o de gravedad se dice que el cuerpo «gira sobre sí mismo».

La rotación también puede ser oscilatoria, como en el péndulo (izquierda). Los giros son completos sólo cuando la energía es lo suficientemente alta (derecha). El gráfico superior muestra la trayectoria en el espacio fásico.

En ingeniería mecánica, se llama revolución a una rotación completa de una pieza sobre su eje (como en la unidad de revoluciones por minuto), mientras que en astronomía se usa esta misma palabra para referirse al movimiento orbital de traslación de un cuerpo alrededor de otro (como los planetas alrededor del Sol).

Rotación en física

Concepto de rotación y revolución

Animación de dos objetos orbitando alrededor de un centro de masas común, ejemplo de revolución.
Ejemplo de rotación.
Ejemplo de revolución.
El movimiento de la estructura de una noría corresponde a un movimiento de rotación. Por el contrario, las barquillas de la noria realizan un movimiento de traslación o revolución con trayectoria circular.

En astronomía es habitual distinguir entre el movimiento de rotación y el de revolución con los siguientes sentidos:

  • La rotación de un cuerpo alrededor de un eje (exterior o interior al cuerpo) corresponde a un movimiento en el que los distintos puntos del cuerpo presentan velocidades que son proporcionales a su distancia al eje. Los puntos del cuerpo situados sobre el eje (en el caso de que éste sea interior al cuerpo) permanecen en reposo.
  • La revolución de una partícula o de un cuerpo extenso corresponde a un movimiento de traslación del cuerpo alrededor de otro.

La distinción entre rotación y revolución está asociada con la existente entre rotación y traslación de un cuerpo extenso. Si la velocidad de traslación es constante (v=cte), cada uno de los puntos del sólido recorrerá una trayectoria rectilínea con celeridad constante y todas esas trayectorias serán paralelas entre sí (movimiento de traslación uniforme). Pero, en general, la velocidad de traslación no tiene por que ser constante y la trayectoria puede ser curvilínea.

Las trayectorias recorridas por los distintos puntos del cuerpo pueden ser circunferencias, todas ellas del mismo radio (congruentes) aunque de distinto centro. Esta situación se presenta en una noria de feria de eje horizontal, como se muestra en la figura: la armadura de la noria gira en torno al eje (rotación), pero las barquillas suspendidas de dicha armadura, prescindiendo de pequeñas oscilaciones pendulares, experimentan una traslación con trayectorias circulares.

Movimiento rotatorio

Rotación infinitesimal

En una rotación en un ángulo infinitesimal δθ, se puede tomar cos δθ ≈ 1 y sen δθδθ, de modo que la expresión de la rotación plana pasa a ser:

Si se componen dos rotaciones infinitesimales y, por ello, se descartan los términos de orden superior al primero, se comprueba que poseen la propiedad conmutativa, que no tienen las rotaciones tridimensionales finitas.

Matemáticamente el conjunto de las rotaciones infinitesimales en el espacio euclideo forman el álgebra de Lie , asociada al grupo de Lie SO(3)

Velocidad angular

Dado un sólido rígido que rota alrededor de un eje, la velocidad lineal v de una partícula se puede expresar a partir de la velocidad angular ω:

Mientras que la aceleración a es:

Si el sólido rígido además de rotar alrededor de un eje tiene un movimiento adicional de traslación con velocidad instantánea V entonces las fórmulas anteriores deben substituirse por:

Dinámica de rotación

La velocidad angular de rotación está relacionada con el momento angular. Para producir una variación en el momento angular es necesario actuar sobre el sistema con fuerzas que ejerzan un momento de fuerza. La relación entre el momento de las fuerzas que actúan sobre el sólido y la aceleración angular se conoce como momento de inercia (I) y representa la inercia o resistencia del sólido a alterar su movimiento de rotación.

La energía cinética de rotación se escribe:

siendo el tensor momento de inercia. La expresión del teorema del trabajo en movimientos de rotación se puede expresar así:

de modo que, la variación de la energía cinética del sólido rígido es igual al producto escalar del momento de las fuerzas por el vector representativo del ángulo girado ().

Eje de rotación

Si bien se define la rotación como un movimiento de rotación alrededor de un eje, debe tenerse presente que dicho eje de rotación puede ir cambiando su inclinación a lo largo del tiempo. Así sucede con el eje de rotación terrestre y en general con el eje de rotación de cualquier sólido en rotación que no presente simetría esférica. Para un planeta, o en general cualquier sólido en rotación, sobre el que no actúa un par de fuerza el momento angular se mantiene constante, aunque eso no implica que su eje de rotación sea fijo. Para una peonza simétrica, es decir, un sólido tal que dos de sus momentos de inercia principales sean iguales y el tercero diferente, el eje de rotación gira alrededor de la dirección del momento angular. Los planetas con muy buena aproximación son esferoides achatados en los polos, lo cual los convierte en una peonza simétrica, por esa razón su eje de giro experimenta una rotación conocida como precesión. La velocidad angular de precesión viene dada por el cociente entre el momento angular de rotación y el menor de los momentos de inercia del planeta:

El el caso de existencia de asimetría axial el planeta es una peonza asimétrica y además el eje de giro puede realizar un movimiento de nutación.

Other Languages
العربية: دوران
български: Въртене
भोजपुरी: घूर्णन
བོད་ཡིག: འཁོར་འགྲོས།
bosanski: Rotacija
català: Rotació
čeština: Otáčení
dansk: Rotation
Ελληνικά: Περιστροφή
English: Rotation
Esperanto: Rotacio
euskara: Errotazio
فارسی: چرخش
galego: Rotación
हिन्दी: घूर्णन
hrvatski: Vrtnja
Bahasa Indonesia: Rotasi
Ido: Rotaco
italiano: Rotazione
日本語: 回転
Basa Jawa: Rotasi
қазақша: Айналу
ಕನ್ನಡ: ಪರಿಭ್ರಮಣ
한국어: 회전
Latina: Rotatio
македонски: Вртење
मराठी: अक्ष
Bahasa Melayu: Putaran
Plattdüütsch: Rotatschoon (Physik)
norsk nynorsk: Rotasjon
ਪੰਜਾਬੀ: ਗੇੜਾ
polski: Obrót
română: Rotație
русский: Вращение
sicilianu: Rutazzioni
srpskohrvatski / српскохрватски: Rotacija
Simple English: Rotation
slovenščina: Vrtenje
chiShona: Dendera
Soomaaliga: Wareega Meere
Basa Sunda: Puteran
தமிழ்: சுழற்சி
తెలుగు: భ్రమణం
Türkçe: Dönüş
українська: Обертання
Tiếng Việt: Quay
中文: 自转