Motor de reacción

Pruebas de un motor turbofán Pratt & Whitney F100 para un caza F-15 Eagle, Base de la Fuerza Aérea Robins (Georgia, Estados Unidos). El túnel detrás de la tobera reduce el ruido y permite la salida de los gases. La cobertura en la parte frontal del motor impide que objetos extraños (incluyendo personas) sean tragados debido a la gran potencia de absorción de la entrada.

Un motor de reacción,[2] es un tipo de motor que descarga un chorro de fluido a gran velocidad para generar un empuje de acuerdo con las leyes de Newton. Esta definición generalizada del motor de reacción incluye turborreactores, turbofanes, motores cohete, estatorreactores y pulsorreactores, pero, en su uso común, el término se refiere generalmente a una turbina de gas utilizada para producir un chorro de gases para propósitos de propulsión.

Historia

Los motores de reacción pueden ser datados desde el siglo I d. C. , cuando Herón de Alejandría inventó la eolípila. Ésta utilizaba el poder del vapor dirigido a través de dos salidas, que causaba que una esfera girase rápidamente sobre su eje dando así un giro raramente hexagonal. Sin embargo, el aparato nunca fue utilizado para realizar trabajos mecánicos y las potenciales aplicaciones prácticas de la invención de Herón no fueron reconocidas. Se consideró como una curiosidad, ya que no tenía uso alguno y en su momento no tenía utilidad específica.

La propulsión a chorro comenzó con la invención del cohete por los chinos en el siglo XI. El sistema de propulsión del cohete fue utilizado inicialmente para crear fuegos artificiales pero gradualmente progresó para crear algunos tipos de armas, aunque su tecnología no progresó durante siglos.

El problema era que esos cohetes eran demasiado ineficaces para ser útiles en la aviación general. Durante los años 1930, el motor de combustión interna en sus diferentes formas (radial estático y rotatorio, refrigerados por aire y líquido) era el único tipo de planta motriz disponible para los diseñadores aeronáuticos. Sin embargo, los ingenieros empezaron a comprender que el motor de pistones estaba limitado en términos del máximo rendimiento que podía alcanzar; el límite era esencialmente el de la eficiencia de la hélice.[3] Ésta alcanzaba su máximo cuando las puntas de las palas se aproximaban a la velocidad del sonido. Si el rendimiento del motor, y por tanto del avión, se quería incrementar para superar esta barrera, se debía encontrar un nuevo modo para mejorar radicalmente el diseño del motor de pistones, o se necesitaba desarrollar un nuevo tipo de planta propulsora. Esto fue el motivo para el desarrollo del motor de reacción.

Los primeros intentos de reactores fueron diseños híbridos en los que una fuente de energía externa aportaba la compresión. En este sistema, denominado « termorreactor» por Secondo Campini, el aire era primero comprimido por una hélice movida por un motor de pistones convencional, luego se mezclaba con el combustible y ardía para crear el empuje. Ejemplos de este tipo de diseño fueron el Coandă-1910 de Henri Coandă, posteriormente el Caproni Campini N.1 o CC.2 y el motor Tsu-11 japonés para impulsar en los aviones kamikaze Yokosuka MXY-7 Ohka a finales de la Segunda Guerra Mundial. Ninguno era completamente eficiente, y el Caproni Campini N.1 incluso era más lento que su diseño tradicional con motor de pistones y hélice.

La clave para un reactor útil fue la turbina de gas, utilizada para extraer energía para impulsar el compresor desde el propio motor. La turbina de gas no era una idea nueva: la patente para una turbina estacionaria fue otorgada a John Barber en Inglaterra en 1791. La primera turbina de gas que funcionó de forma autosostenida exitosamente fue construida en 1903 por el ingeniero noruego Ægidius Elling. Las primeras patentes para la propulsión a chorro fueron otorgadas en 1917. Las limitaciones en el diseño y en la metalurgia impidieron que estos tipos de motores fuesen fabricados. Los principales problemas eran la seguridad, la fiabilidad, el peso y, especialmente, el funcionamiento continuo.

En 1929, el aprendiz Frank Whittle envió formalmente sus ideas para un turborreactor a sus superiores. El 16 de enero de 1930, en Inglaterra, Whittle pidió su primera patente (otorgada en 1932). La patente mostraba un compresor axial de dos etapas alimentando a un compresor centrífugo de un único lado. Whittle posteriormente se concentró en un compresor centrífugo más simple por varias razones prácticas. En 1935, Hans von Ohain comenzó a trabajar en un diseño similar en Alemania, aparentemente sin estar informado del trabajo de Whittle, y en ese mismo año, en España el ingeniero aeronáutico militar Virgilio Leret ya disponía de un proyecto de un motor a reacción denominado Mototurbocompresor de Reacción Continua, patentado en Madrid el 28 de marzo de 1935, pero su fusilamiento al año siguiente le impidió desarrollar el proyecto, cuyos planos suministró un pariente republicano al ejército inglés.

Whittle tuvo su primer motor listo en abril de 1937. Estaba alimentado por combustible líquido e incluía una bomba autocontenida. El motor de Von Ohain, con cinco meses de retraso respecto al de Whittle, utilizaba gas que se proporcionaba bajo una presión externa, por tanto no era autocontenido. El equipo de Whittle experimentó casi un fracaso cuando el motor no se pudo parar, incluso después de cortar el combustible. El combustible se había filtrado en el motor y se acumuló, por lo que el motor no se pararía hasta que se quemase todo el combustible.

Ohain contactó con Ernst Heinkel, uno de los principales industriales de aviación de la época, que vio las posibilidades del nuevo diseño. Heinkel había comprado recientemente la compañía de motores Hirth, y Ohain y su maquinista jefe, Max Hahn, fueron asignados como una nueva división de la compañía Hirth. Su primer motor, el HeS 1, comenzó a funcionar en septiembre de 1937. A diferencia del diseño de Whittle, Ohain utilizó hidrógeno como combustible, proporcionado bajo presión externa. Los siguientes diseños culminaron en el motor alimentado por gasolina HeS 3 de 5 k N, que fue utilizado para equipar en un He 178 y voló por primera vez el 27 de agosto de 1939 por Erich Warsitz en el aeródromo de Marienehe. El He 178 se convirtió en el primer avión de reacción.

En esos momentos, el motor de Whittle comenzó a ser útil y su Power Jets Ltd. empezó a recibir dinero del Ministerio del Aire. En 1941 una versión del motor denominado W.1 con una potencia de 4 kN fue utilizada en el avión Gloster E28/39 especialmente construido para el motor y realizó su primer vuelo el 15 de mayo de 1941.

Motor en un avión (A320 de Clickair).

Un problema con los primeros diseños, que se denominaban motores de flujo centrífugo, era que el compresor trabajaba lanzando (acelerando) el aire desde la entrada de aire central a la periferia del motor, donde el aire era comprimido, convirtiendo su velocidad en presión. Una ventaja de este diseño fue que ya era bien conocido, siendo implementado en supercompresores centrífugos. Sin embargo, dadas las limitaciones tecnológicas, el compresor necesitaba ser de un gran diámetro para producir la potencia requerida.

El austriaco Anselm Franz de la división de motores de Junkers (Junkers Motoren o Jumo) solucionó estos problemas con la introducción del compresor de flujo axial, que era esencialmente una turbina en reversa. El aire venía del frente del motor y era impulsado hacia la parte posterior por una etapa de hélices, donde chocaba contra un grupo de hélices que no rotaban. El proceso no se acercaba en potencia al del compresor centrífugo, por lo que se añadía varios grupos de hélices para conseguir la compresión necesaria. Incluso con toda la complejidad añadida, el motor era de un diámetro mucho menor. Jumo fue asignado para el siguiente motor y el resultado fue el Jumo 004. Tras algunos problemas menores, la producción en serie de este motor comenzó en 1944 como planta motriz para el primer caza a reacción, el Messerschmitt Me 262 (y posteriormente el primer bombardero reactor, el Arado Ar 234). Tras la Segunda Guerra Mundial, los aliados estudiaron el Me 262 y su tecnología contribuyó a los primeros cazas a reacción estadounidenses y soviéticos.

Los motores de flujo centrífugo han sido mejorados desde su introducción. Con las mejoras en la tecnología de rodamientos, la velocidad de los ejes ha aumentado, reduciendo en importancia el diámetro del compresor. Una longitud menor del motor permanece siendo una ventaja de este diseño. Además, sus componentes son robustos, mientras que los motores de flujo axial son más propensos a ser dañados por objetos externos.

Other Languages
العربية: محرك نفاث
azərbaycanca: Reaktiv mühərrik
čeština: Proudový motor
dansk: Jetmotor
English: Jet engine
Esperanto: Jetmotoro
فارسی: موتور جت
Gaeilge: Scairdinneall
हिन्दी: जेट इंजन
hrvatski: Mlazni motor
Bahasa Indonesia: Mesin jet
italiano: Esoreattore
Patois: Jet injin
한국어: 제트 엔진
Kurdî: Motora jet
Limburgs: Sjtraolmotor
मराठी: जेट इंजिन
Bahasa Melayu: Enjin jet
မြန်မာဘာသာ: ဂျက်အင်ဂျင်
Nederlands: Straalmotor
norsk nynorsk: Jetmotor
norsk bokmål: Jetmotor
ਪੰਜਾਬੀ: ਜੈੱਟ ਇੰਜਣ
پنجابی: جیٹ انجن
português: Motor a reação
srpskohrvatski / српскохрватски: Mlazni motor
Simple English: Jet engine
slovenčina: Prúdový motor
slovenščina: Reaktivni motor
српски / srpski: Млазни мотор
svenska: Jetmotor
Türkçe: Jet motoru
اردو: جیٹ انجن
Winaray: Jet engine