Modus tollendo ponens


El modus tollendo ponens ( latín: "el modo que, al negar, afirma") 1 o silogismo disyuntivo[8] y en lógica proposicional, una regla de inferencia válida.

El modus tollendo ponens o silogismo disyuntivo establece que, si se nos dice que al menos una de las dos propocisiones es verdadera; y también se nos dijo que no es la primera la que es verdadera; se puede inferir que debe ser la última la que es verdadera. Es decir, si P o Q es verdadero y P es falso, entonces Q es verdadero.

El modus tollendo ponens puede escribirse formalmente como:

donde cada vez que aparezcan las instancias de "" y "" en las líneas de una demostración, se puede colocar "" en una línea posterior.

Un ejemplo de modus tollendo ponens o silogismo disyuntivo es:

O el incumplimiento es una violación de seguridad, o no está sujeto a multas.
El incumplimiento no es una violación de seguridad.
Por lo tanto, no está sujeto a multas.

La razón por la que esto le llama silogismo disyuntivo es que, primero, es un silogismo - un argumento en tres pasos -, y segundo, contiene una disyunción lógica, que es simplemente el "o" que conecta ambos términos. "P o Q" es precisamente una disyunción. Esta norma permite eliminar una disyunción - el "o" - de una demostración lógica.

El silogismo disyuntivo está estrechamente relacionado al silogismo hipotético, que es también un tipo de silogismo y una regla de inferencia.

Notación formal

La regla de silogismo disyuntivo puede escribirse en la notación subsiguiente:

donde es un símbolo metalógico que significa que es una consecuencia sintáctica de , y en algún sistema lógico;

y expresado como una tautología verdad-funcional o teorema de la lógica proposicional:

donde y son proposiciones expresadas en algún sistema formal.

Other Languages