Modelo Lambda-CDM

Según estimaciones recientes, resumidas en este gráfico de la NASA, alrededor del 70% del contenido energético del universo consiste en energía oscura, cuya presencia inferimos en su efecto sobre la expansión del universo pero sobre cuya naturaleza última casi no sabemos nada.
Cosmología física

Ilc 9yr moll4096.png
Radiación de fondo de microondas

Artículos
Universo primitivo Teoría del Big Bang · Inflación cósmica · Nucleosíntesis primordial
Expansión Expansión métrica del espacio · Expansión acelerada del Universo · Ley de Hubble · Corrimiento al rojo
Estructura Forma del universo · Espacio-tiempo · Universo observable · Universo · Materia oscura · Energía oscura
Experimentos Planck (satélite) · WMAP · COBE
Científicos Albert Einstein · Edwin Hubble · Georges Lemaître · Stephen Hawking · George Gamow
Portales
Principal Cosmología
Otros Física · Astronomía · Exploración espacial · Sistema Solar

En cosmología, el modelo Lambda-CDM o ΛCDM (en inglés: Lambda-Cold Dark Matter) ? representa el modelo de concordancia del Big Bang que explica las observaciones cósmicas de la radiación de fondo de microondas, así como la estructura a gran escala del universo y las observaciones realizadas de supernovas, arrojando luz sobre la explicación de la aceleración de la expansión del Universo. Es el modelo conocido más simple que está de acuerdo con todas las observaciones.

  • Λ (lambda) indica la constante cosmológica como parte de un término de la energía oscura que permite conocer el valor actual de la expansión acelerada del Universo. La constante cosmológica se describe en términos de , la fracción de densidad de energía de un universo plano. En la actualidad, 0.70, lo que implica que vale 70% de la densidad de energía del presente universo.
  • La materia oscura fría es el modelo donde la materia oscura se explica como fría (es decir no termalizada), no-bariónica, sin colisiones. Este componente se encarga del 26% de la densidad de la energía del actual universo. El 4% restante es toda la materia y energía que componen los átomos y los fotones que son los bloques que construyen los planetas, las estrellas y las nubes de gas en el universo.
  • El modelo supone un espectro de casi invariancia de escala de perturbaciones primordiales y un universo sin curvatura espacial. También asume que no tiene ninguna topología observable, de modo que el universo es mucho más grande que el horizonte observable de la partícula. Se dan predicciones de inflación cósmica.

Estas son las suposiciones más simples para un modelo consistente y físico de la cosmología. Sin embargo, ΛCDM es tan sólo un modelo. Los cosmólogos anticipan que todas estas presunciones no serán conocidas exactamente, hasta que no se conozca más sobre la física fundamental. Particularmente, la inflación cósmica predice curvatura espacial en el nivel de 10−4 a 10−5. También sería sorprendente que la temperatura de la materia oscura fuera cero absoluto. Por otra parte, ΛCDM no dice nada sobre el origen físico fundamental de la materia oscura, de la energía oscura y del espectro cuasi escalar-invariante de las perturbaciones primordiales de la curvatura: en ese sentido, es simplemente una parametrización útil de la ignorancia.

Historia

El descubrimiento en 1965 del fondo cósmico de microondas (Cosmic Microwave Background , o CMB) confirmó una predicción clave de la cosmología del Big Bang. A partir de ahí, se aceptó generalmente que el universo empezó en un estado denso y caliente y que se ha ido expandiendo con el tiempo. La tasa de expansión depende de los tipos de materia y energía presentes en el universo, y, en particular, de si la densidad total está por encima o por debajo de la llamada densidad crítica. Durante la década de 1970, la atención se centró en los modelos bariónicos puros, pero tenían graves problemas para explicar la formación de las galaxias dadas las pequeñas anisotropías observadas en el CMB (límites superiores en ese momento). A principios de 1980, se pensó que esto se podría resolver si la materia oscura fría dominase sobre los bariones, y la teoría de la inflación cósmica motivó modelos con densidad crítica. Durante la década de 1980, la mayoría de las investigaciones se centraron en la materia oscura fría con densidad crítica en materia, en torno al 95% de CDM y el 5% de bariones: éstos mostraron con éxito la formación de galaxias y de los cúmulos de galaxias, pero seguían teniendo problemas; en particular, el modelo requería una constante de Hubble menor que la preferida por las observaciones y el modelo hacía bajas predicciones sobre los agrupamiento de galaxias a gran escala. Estas dificultades aumentaron con el descubrimiento en 1992 de la anisotropía del CMB observada por el COBE, y comenzaron a considerarse varias alternativas incluyendo la ΛCDM y otros modelos de materia oscura mezcla fría+caliente. El modelo ΛCDM se convirtió entonces en el estándar siguiendo las observaciones en 1998 de la expansión acelerada del Universo, y fue respaldado rápidamente por otras observaciones: en 2000, el experimento de fondo de microondas BOOMERanG midió la densidad total (materia+energía) que estaba cerca del 100% de la crítica, mientras que en 2001 la exploración de galaxias en el infrarrojo 2dFGRS midió la densidad de materia que era de cerca de 25%; la gran diferencia entre ambas apoya una Λ positiva o energía oscura. Las mediciones del fondo de microondas mucho más precisas hechas por el WMAP en 2003-2010 han seguido apoyando y refinando el modelo.

Hay en la actualidad investigaciones activas de muchos aspectos del modelo ΛCDM, tanto para refinar sus parámetros como para detectar posiblemente desviaciones. Además, el ΛCDM no tiene ninguna teoría física explícita que explique el origen o la naturaleza física de la materia oscura o energía oscura; el casi invariante espectro de perturbaciones del CMB, y su imagen a través de la esfera celeste, se cree que son el resultado de irregularidades térmicas y acústicas muy pequeñas en el punto de recombinación. Una gran mayoría de astrónomos y astrofísicos apoyan el modelo ΛCDM u otros próximos, pero Milgrom, McGaugh y Kroupa encabezan otras posiciones críticas, atacando las porciones de materia oscura de la teoría desde la perspectiva de los modelos de formación de galaxias y apoyando la teoría alternativa MOND, que requiere una modificación de las ecuaciones de Einstein y de las ecuaciones de Friedmann como se ve en algunas propuestas, como la teoría de MOG o teoría TeVeS (Tensor–vector–scalar gravity). Otras propuestas de astrofísicos teóricos o alternativas cosmológicas a la relatividad general de Einstein que tratan de explicar la energía oscura o la materia oscura son la gravedad f (R), la teoría tensort-escalar, la cosmología de branas, el modelo de DGP y teorías galileon.

Other Languages