Mediatriz

Recta perpendicular de dicho segmento trazada por su punto medio. Equivalentemente se puede definir como — la recta — cuyos puntos son equidistantes a los extremos del segmento.

Descripción

La recta r es la mediatriz del segmento AB. Cualquier punto (P) de ella, equidista de los extremos del segmento A y B (AP = BP).

En efecto, sea el segmento que sea, determinado por los puntos y . Sea el punto medio del segmento y la recta perpendicular al segmento por dicho punto. Sea un punto sobre la recta . En la simetría axial respecto de la recta , el punto es invariante y los puntos y son uno el simétrico del otro. Por tanto, en esta simetría, el segmento se transforma en el segmento , ambos segmentos son congruentes y el punto equidista de los puntos y . En consecuencia, todo punto que se encuentre sobre la recta pertenece a la mediatriz del segmento en cuestión.

Recíprocamente, sea un segmento y sea un punto que equidista de y de , esto es que los segmentos y son iguales. Consideremos la bisectriz del ángulo y sea la intersección de dicha bisectriz con el segmento .

Por construcción, los ángulos y son iguales y en la simetría axial respecto de la recta se transforman uno en el otro. Como los segmentos y son iguales, en esta simetría, los puntos y son uno la imagen del otro. Concluimos que el punto es punto medio del segmento y que dicho segmento es perpendicular a la recta .

Other Languages