Mecánica newtoniana

La primera y segunda ley de Newton, en latín, en la edición original de su obra Principia Mathematica.

La mecánica newtoniana o mecánica vectorial es una formulación específica de la mecánica clásica que estudia el movimiento de partículas y sólidos en un espacio euclídeo tridimensional. Aunque la teoría es generalizable, la formulación básica de la misma se hace en sistemas de referencia inerciales donde las ecuaciones básicas del movimiento se reducen a las leyes de Newton, en honor a Isaac Newton, quien hizo contribuciones fundamentales a esta teoría.

La mecánica es la parte de la física que estudia el movimiento. Se subdivide en:

La mecánica newtoniana es adecuada para describir eventos físicos de la experiencia diaria, es decir, a eventos que suceden a velocidades muchísimo menores que la velocidad de la luz y tienen escala macroscópica. En el caso de sistemas con velocidades próximas a la velocidad de la luz debemos acudir a la mecánica relativista.

Importancia de la mecánica newtoniana

La mecánica newtoniana es un modelo físico macroscópico para describir el movimiento de los cuerpos en el espacio relacionando este movimiento con sus causas eficientes ( fuerzas). Históricamente, la mecánica newtoniana fue el primer modelo dinámico capaz de hacer predicciones importantes sobre el movimiento de los cuerpos, incluyendo las trayectorias de los planetas. Es conceptualmente más simple que otras formulaciones de la mecánica clásica como la lagrangiana o hamiltoniana, por lo que aunque útil en problemas relativamente sencillos, pero su uso en problemas complicados puede ser más enredado que las otras dos formulaciones.

Y, por supuesto, la mecánica newtoniana es relativamente más sencilla que una teoría como la mecánica cuántica relativista, que describe adecuadamente incluso fenómenos partículas elementales moviéndose a gran velocidad y entornos microscópicos, que no pueden ser adecuadamente modelizados por la mecánica newtoniana.

La mecánica newtoniana es suficientemente válida para la gran mayoría de los casos prácticos cotidianos en una gran cantidad de sistemas. Esta teoría, por ejemplo, describe con gran exactitud sistemas como cohetes, movimiento de planetas, moléculas orgánicas, trompos, trenes y trayectorias de móviles en general.

La mecánica clásica de Newton es ampliamente compatible con otras teorías clásicas como el electromagnetismo y la termodinámica, también "clásicos" (estas teorías tienen también su equivalente cuántico).

Other Languages