Mecánica de medios continuos

La mecánica de medios continuos (MMC) es una rama de la física (específicamente de la mecánica) que propone un modelo unificado para la mecánica de sólidos deformables, sólidos rígidos y fluidos. Físicamente los fluidos se clasifican en líquidos y gases. El término medio continuo se usa tanto para designar un modelo matemático, como cualquier porción de material cuyo comportamiento se puede describir adecuadamente por ese modelo.

Introducción

Descripción matemática de la deformación de un medio continuo.

Un medio continuo se concibe como una porción de materia formada por un conjunto infinito de partículas (que forman parte, por ejemplo, de un sólido, de un fluido o de un gas) que va a ser estudiado macroscópicamente, es decir, sin considerar las posibles discontinuidades existentes en el nivel microscópico (nivel atómico o molecular).

En consecuencia, en el tratamiento matemático ideal de un medio continuo se admite usualmente que no hay discontinuidades entre las partículas y que la descripción matemática de este medio y de sus propiedades se puede realizar mediante funciones continuas.

Existen tres grandes grupos de medios continuos:

Modelo matemático

En el modelo planteado por la mecánica de medios continuos las magnitudes físicas como la energía o la cantidad de movimiento pueden ser manejadas en el límite infinitesimal. Por esa razón las relaciones básicas en mecánica de medios continuos toman la forma de ecuaciones diferenciales. Los tipos básicos de ecuaciones usadas en mecánica de medios continuos son:

Puesto que las propiedades de los sólidos y fluidos no dependen del sistema de coordenadas elegido para su estudio, las ecuaciones de la mecánica de medios continuos tienen forma tensorial. Es decir, las magnitudes básicas que aparecen en la mecánica de medios continuos son tensores lo cual permite escribir las ecuaciones en una forma básica que no varia de un sistema de coordenadas a otro.

Movimiento del medio

El movimiento de medio continuo necesita especificar cómo se mueve cada uno de los puntos materiales que componen el medio a lo largo del tiempo. Eso implica que no basta un número finito de coordenadas sino para cada punto se requiere una función del tiempo que describa su posición en cada instante. Usualmente la descripción del movimiento se realiza a partir de una configuración inicial. Esta configuración inicial está formada por todos los puntos del espacio que inicialmente estaban ocupados por el medio continuo, por lo que el movimiento puede realizarse mediante una aplicación del tipo:

El movimiento del punto material de coordenadas iniciales vendrá dado por:

A partir de esa función se puede definir el gradiente de deformación en cada punto como la derivada jacobiana de la anterior aplicación:

A partir de ese gradiente puede definirse el tensor deformación y el tensor velocidad de deformación. Y a partir de ellos en función del tipo de material que forme el medio continuo se puede obtener el tensor de tensiones mediante la ecuación constitutiva del medio.

Sólidos y fluidos

La diferencia fundamental entre sólidos deformables y fluidos es que las tensiones en un punto en un instante dado en los sólidos se ven influidas por el valor actual de la deformación en dicho punto, es decir, las tensiones dependen de cuanto difiere la "forma original" o configuración natural y el estado actual. Por el contrario, en un fluido las tensiones en un punto sólo dependen de un escalar llamado presión (p) y de la velocidad de deformación , pero no la deformación misma. Por ejemplo en un sólido elástico homogéneo ecuación constitutiva tiene la forma:

Mientras que un fluido tiene una ecuación constitutiva de un fluido es del tipo:

Un sólido viscoelástico tiene tensiones que siguen dependiendo de la deformación aunque al igual que un fluido el valor de la tensión se ve afectado por la velocidad de deformación, así un sólido viscoelástico homogéneo de tipo diferencial podría tener una ecuación constitutiva del tipo:

Es interesante notar que la ecuación de equilibrio:

Donde

es la densidad del medio.
es la derivada material,
es el campo de velocidades,
es la densidad de fuerza por unidad de masa
es el tensor tensión

Es válida tanto para sólidos deformables como para fluidos. En el caso de fluidos newtonianos se substituye el tensor tensión por la expresión constitutiva en términos de la velocidad de deformación la ecuación anterior se convierte en la ecuación de Navier-Stokes para el fluido.

Other Languages
magyar: Kontinuum
Bahasa Indonesia: Mekanika kontinuum
日本語: 連続体力学
한국어: 연속체 역학
Bahasa Melayu: Mekanik kontinum
norsk bokmål: Kontinuumsmekanikk
oʻzbekcha/ўзбекча: Tutash muhitlar mexanikasi