Matriz triangular

En álgebra lineal, una matriz triangular es un tipo especial de matriz cuadrada cuyos elementos por encima o por debajo de su diagonal principal son cero. Debido a que los sistemas de ecuaciones lineales con matrices triangulares son mucho más fáciles de resolver, las matrices triangulares son utilizadas en análisis numérico para resolver sistemas de ecuaciones lineales, calcular inversas y determinantes de matrices. El método de descomposición LU permite descomponer cualquier matriz invertible como producto de una matriz triangular inferior L y una superior U.

Descripción

Una matriz cuadrada de orden n se dice que es triangular superior si es de la forma:

Análogamente, una matriz de la forma:

se dice que es una matriz triangular inferior.

Se suelen emplear las letras U y L, respectivamente, ya que U es la inicial de "upper triangular matrix" y L de "lower triangular matrix", los nombres que reciben estas matrices en inglés.

Other Languages