Matriz diagonalizable

En álgebra lineal, una matriz cuadrada "A" se dice que es diagonalizable si es semejante a una matriz diagonal. Es decir, si mediante un cambio de base puede reducirse a una forma diagonal. En este caso, la matriz podrá descomponerse de la forma . En donde "P" es una matriz invertible cuyos vectores columna son vectores propios de A, y D es una matriz diagonal formada por los valores propios de A.

Si la matriz A es semejante ortogonalmente a una matriz diagonal, es decir, si la matriz P es ortogonal se dice entonces que la matriz A es diagonalizable ortogonalmente, pudiendo escribirse como . El teorema espectral garantiza que cualquier matriz cuadrada simétrica con coeficientes reales es ortogonalmente diagonalizable. En este caso P está formada por una base ortonormal de vectores propios de la matriz siendo los valores propios reales. La matriz P es por tanto ortogonal y los vectores filas de son los vectores columnas de P.

Definición

Sea una matriz cuadrada con valores en un cuerpo , se dice que la matriz es diagonalizable si, y sólo si, A se puede descomponer de la forma:

Donde:

  • es una matriz diagonal cuya diagonal principal está formada por los elementos de , apareciendo cada uno tantas veces como indique su multiplicidad algebraica, siendo el espectro de , es decir, el conjunto de autovalores de la matriz :

  • es la matriz cuyas columnas son los vectores que constituyen una base del subespacio propio asociado a cada siguiendo el orden establecido en D, esto es, los vectores que forman el núcleo de la matriz :

Endomorfismo diagonalizable

Un endomorfismo de espacio vectorial ( aplicación lineal de un espacio vectorial en sí mismo) se dice diagonalizable por similaridad (o simplemente diagonalizable) si existe una base en la que su matriz asociada sea una matriz diagonal. Sin embargo la diagonalización no está asegurada, es decir no es posible decir que todo endomorfismo sea diagonalizable. La importancia de la diagonalización nos motiva a obtener una base en la que la matriz asociada a un endomorfismo no diagonalizable sea más simple aunque no diagonal. Para ello se seguirán las mismas técnicas que para diagonalización, usando la teoría sobre autovalores y autovectores (también llamados valores y vectores propios o en inglés eigenvalues y eigenvectors). Recordemos que dado un operador lineal se dice que W subespacio de V es T-invariante si se tiene que