Matriz diagonal

En álgebra lineal, una matriz diagonal es una matriz cuadrada en que las entradas son todas nulas salvo en la diagonal principal, y éstas pueden ser nulas o no. Así, la matriz D = (di,j) es diagonal si:

Ejemplo:

Toda matriz diagonal es también una matriz simétrica, triangular (superior e inferior) y (si las entradas provienen del cuerpo R o C) normal.

Otro ejemplo de matriz diagonal es la matriz identidad.

Operaciones matriciales

Las operaciones de suma y producto de matrices son especialmente sencillas para matrices diagonales. Vamos a emplear aquí la notación de diag(a1,...,an) para una matriz diagonal que tiene las entradas a1,...,an en la diagonal principal, empezando en la esquina superior izquierda. Entonces, para la suma se tiene:

diag(a1,...,an) + diag(b1,...,bn) = diag(a1+b1,...,an+bn)

y para el producto de matrices,

diag(a1,...,an) · diag(b1,...,bn) = diag(a1b1,...,anbn).

La matriz diagonal diag(a1,...,an) es invertible si y sólo si las entradas a1,...,an son todas distintas de 0. En este caso, se tiene

diag(a1,...,an)-1 = diag(a1-1,...,an-1).

En particular, las matrices diagonales forman un subanillo del anillo de las matrices de n×n.

Multiplicar la matriz A por la izquierda con diag(a1,...,an) equivale a multiplicar la fila i-ésima de A por ai para todo i. Multiplicar la matriz A por la derecha con diag(a1,...,an) equivale a multiplicar la columna i-ésima de A por ai para todo i.

Other Languages