Matemáticas discretas

La matemática discreta es un área de las matemáticas encargadas del estudio de los conjuntos discretos: finitos o infinitos numerables.

En oposición a las matemáticas continuas, que se encargan del estudio de conceptos como la continuidad y el cambio continuo, la matemáticas discretas estudian estructuras cuyos elementos pueden contarse uno por uno separadamente. Es decir, los procesos en matemáticas discretas son contables, como por ejemplo, los números enteros, grafos y sentencias de lógica.[1]

Mientras que el cálculo infinitesimal está fundado en los números reales que no son numerables, la matemática discreta es la base de todo lo relacionado con los números naturales o conjuntos numerables.

Son fundamentales para la ciencia de la computación, porque sólo son computables las funciones de conjuntos numerables.

La clave en matemáticas discretas es que no es posible manejar las ideas de proximidad o límite y suavidad en las curvas, como se puede en el cálculo. Por ejemplo, en matemáticas discretas una incógnita puede ser 2 ó 3, pero nunca se aproximará a 3 por la izquierda con 2.9, 2.99, 2.999, etc. Las gráficas en matemáticas discretas vienen dadas por un conjunto finito de puntos que se pueden contar por separado; es decir, sus variables son discretas o digitales, mientras que las gráficas en cálculo son trazos continuos de rectas o curvas; es decir, sus variables son continuas o analógicas.

Historia

Las matemáticas discretas han visto un gran número de problemas difíciles de resolver. En teoría de grafos, mucha de la investigación realizada en sus inicios fue motivada por intentos para probar el teorema de los cuatro colores, el cual fue probado más de cien años después de su inicial descripción. El problema de los puentes de Königsberg, un problema clásico del prolífico Leonhard Euler.

En lógica, el segundo problema de la lista de problemas abiertos de David Hilbert, era probar que los axiomas de la aritmética son consistentes. El segundo teorema de Gödel de la incompletitud probó en 1931 que esto no es posible, por lo menos dentro de la aritmética en sí. El décimo problema de Hilbert era determinar si un polinomio diofántico con coeficientes enteros dado tiene una solución entera. En 1970, Yuri Matiyasevich probó que esto es imposible de hacer.

La necesidad de descifrar códigos alemanes en la Segunda Guerra Mundial dio paso a avances en la criptografía y la ciencia computacional teórica, con el primer computador electrónico, digital y programable desarrollado en Inglaterra. Al mismo tiempo, requerimientos militares motivaron avances en la investigación de operaciones. La Guerra Fría tuvo significancia en la criptografía, y la mantuvo vigente, con lo que se realizaron avances en la criptografía asimétrica.

Actualmente, uno de los problemas abiertos más famosos en la teoría de la informática es el problema de las clases de complejidad "P = NP". El Clay Mathematics Institute ha ofrecido un premio de un millón de dólares para la primera demostración correcta, junto con premios para 6 problemas más.

Other Languages
azərbaycanca: Diskret riyaziyyat
беларуская (тарашкевіца)‎: Дыскрэтная матэматыка
Bahasa Indonesia: Matematika diskret
日本語: 離散数学
한국어: 이산수학
Bahasa Melayu: Matematik diskret
Nederlands: Discrete wiskunde
norsk nynorsk: Diskret matematikk
norsk bokmål: Diskret matematikk
srpskohrvatski / српскохрватски: Diskretna matematika
Simple English: Discrete mathematics
slovenščina: Diskretna matematika
Tiếng Việt: Toán học rời rạc
中文: 离散数学