Módulo inyectivo

En matemáticas, un módulo inyectivo es un módulo Q que comparte ciertas propiedades deseables con el Z-módulo Q de todos los números racionales. Específicamente, si Q es un submódulo de algún otro módulo, entonces es un sumando directo de ese módulo; también, dado un submódulo de un módulo Y, entonces cualquier homomorfismo de módulos de este submódulo a Q se puede ampliar a un homomorfismo de todo Y a Q. Este concepto es dual al de los módulos proyectivos.

Definición

Más formalmente, un módulo izquierdo Q sobre el anillo R es inyectivo si satisface una de (y por lo tanto todas) las condiciones equivalentes siguientes:

  • Si Q es un submódulo de un otro R-módulo izquierdo M, entonces existe otro submódulo K de M tal que M es la suma directa interna de Q y de K, es decir, Q +K=M y QK = {0}.
  • Si X es un submódulo del R- módulo izquierdo Y y g: XQ es un homomorfismo de módulos, entonces existe un homomorfismo de módulos h: YQ tal que h(x) = g(x) para todo x en X.
  • Si X y Y son R-módulos izquierdos y f: XY es un homomorfismo inyectivo de módulos y g: XQ es un homomorfismo de módulos arbitrario, entonces existe un homomorfismo de módulos h: YQ tal que hf = g, es decir tal que el diagrama siguiente conmuta:


Injective module.png

los R-módulos derechos inyectivos se definen análogamente.

Other Languages