Módulo (matemática)

En matemáticas, un módulo es una de las estructuras algebraicas fundamentales usadas en álgebra abstracta. Un módulo sobre un anillo es una generalización de la noción de espacio vectorial sobre un cuerpo, donde los correspondientes escalares son los elementos un anillo (con identidad) arbitrario y donde está definida una multiplicación (a la izquierda y/o a la derecha) entre elementos del anillo y elementos del módulo.

Los módulos están estrechamente relacionados con la teoría de representación de grupos. Son una de las nociones centrales del álgebra conmutativa y del álgebra homológica y se usan en la geometría algebraica y la topología algebraica.

Definición

Sea un anillo con identidad y sea su identidad multiplicativa. Un -módulo izquierdo de es un grupo abeliano y una operación tal que para cualesquiera , , se tiene

Generalmente, se escribe simplemente "un -módulo izquierdo " o .

Algunos autores[ cita requerida] omiten la condición 4 en la definición general de módulos izquierdos, y llaman a las estructuras definidas antes "módulos izquierdos unitales". En este artículo sin embargo, todos los módulos (y todos los anillos) se presuponen unitales. Por lo general, para módulos, en la mayoría de los textos se considera la condición 4, mientras que para anillos no se supone que exista elemento unidad, excepto que se diga lo contrario.

Un -módulo derecho de o se define de forma semejante, sólo que el anillo actúa por la derecha, es decir se tiene una multiplicación escalar de la forma , y los tres axiomas antedichos se escriben con los escalares y a la derecha de e .

Si R es conmutativo, entonces los R-módulos a la izquierda son lo mismo que R-módulos a la derecha y se llaman simplemente R-módulos.

Other Languages