Leyes de Newton

La primera y segunda ley de Newton, en latín, en la edición original de su obra Principia Mathematica

Las leyes de Newton, también conocidas como leyes del movimiento de Newton,[1] son tres principios a partir de los cuales se explican una gran parte de los problemas planteados en mecánica clásica, en particular aquellos relativos al movimiento de los cuerpos, que revolucionaron los conceptos básicos de la física y el movimiento de los cuerpos en el universo.

Constituyen los cimientos no solo de la dinámica clásica sino también de la física clásica en general. Aunque incluyen ciertas definiciones y en cierto sentido pueden verse como axiomas, Newton afirmó que estaban basadas en observaciones y experimentos cuantitativos; ciertamente no pueden derivarse a partir de otras relaciones más básicas. La demostración de su validez radica en sus predicciones... La validez de esas predicciones fue verificada en todos y cada uno de los casos durante más de dos siglos.[2]

En concreto, la relevancia de estas leyes radica en dos aspectos: por un lado constituyen, junto con la transformación de Galileo, la base de la mecánica clásica, y por otro, al combinar estas leyes con la ley de la gravitación universal, se pueden deducir y explicar las leyes de Kepler sobre el movimiento planetario. Así, las leyes de Newton permiten explicar, por ejemplo, tanto el movimiento de los astros como los movimientos de los proyectiles artificiales creados por el ser humano y toda la mecánica de funcionamiento de las máquinas. Su formulación matemática fue publicada por Isaac Newton en 1687 en su obra Philosophiæ naturalis principia mathematica.[nota 1]

La dinámica de Newton, también llamada dinámica clásica, solo se cumple en los sistemas de referencia inerciales (que se mueven a velocidad constante; la Tierra, aunque gire y rote, se trata como tal a efectos de muchos experimentos prácticos). Solo es aplicable a cuerpos cuya velocidad dista considerablemente de la velocidad de la luz; cuando la velocidad del cuerpo se va aproximando a los 300 000 km/s (lo que ocurriría en los sistemas de referencia no-inerciales) aparecen una serie de fenómenos denominados efectos relativistas. El estudio de estos efectos (aumento de la masa y contracción de la longitud, fundamentalmente) corresponde a la teoría de la relatividad especial, enunciada por Albert Einstein en 1905.

Historia

Busto de Aristóteles

La dinámica es la parte de la física que estudia las relaciones entre los movimientos de los cuerpos y las causas que los provocan, en concreto las fuerzas que actúan sobre ellos. La dinámica, desde el punto de vista de la mecánica clásica, es apropiada para el estudio dinámico de sistemas grandes en comparación con los átomos y que se mueven a velocidades mucho menores que las de la luz.[3] Para entender estos fenómenos, el punto de partida es la observación del mundo cotidiano. Si se desea cambiar la posición de un cuerpo en reposo es necesario empujarlo o levantarlo, es decir, ejercer una acción sobre él.

Aparte de estas intuiciones básicas, el problema del movimiento es muy complejo: todos aquellos que se observan en la naturaleza (caída de un objeto en el aire, movimiento de una bicicleta, un coche o un cohete espacial) son complicados. Esto motivó que el conocimiento sobre estos hechos fuera erróneo durante siglos. Aristóteles pensó que el movimiento de un cuerpo se detiene cuando la fuerza que lo empuja deja de actuar. Posteriormente se descubrió que esto no era cierto pero el prestigio de Aristóteles como filósofo y científico hizo que estas ideas perduraran siglos,[4] hasta que científicos como Galileo Galilei o Isaac Newton hicieron avances muy importantes con sus nuevas formulaciones. Sin embargo hubo varios físicos que se aproximaron de manera muy certera a las formulaciones de Newton mucho antes de que este formulara sus leyes del movimiento.

Es el caso del español Juan de Celaya,[6]

Otro destacado pionero fue el también español, y discípulo de Celaya, Domingo de Soto,[8] Su teoría del movimiento uniformemente acelerado y la caída de los graves fue el precedente de la Ley de la Gravedad de Newton. Escribió numerosas obras de teología, derecho, filosofía y lógica y también comentó varios libros de física y lógica aristotélica, de los cuales el más importante fue Quaestiones super octo libros physicorum Aristotelis (1551), sobre cinemática y dinámica, la cual fue publicada en varias ciudades italianas, influyendo en personajes como Benedetti o Galileo. Domingo de Soto fue uno de los primeros en establecer que un cuerpo en caída libre sufre una aceleración uniforme con respecto al tiempo —dicha afirmación también había sido establecida por Nicolás Oresme casi dos siglos antes— y su concepción sobre la masa fue avanzada en su época. En su libro Quaestiones explica la aceleración constante de un cuerpo en caída libre de esta manera:

Este tipo de movimiento propiamente sucede en los graves naturalmente movidos y en los proyectiles. Donde un peso cae desde lo alto por un medio uniforme, se mueve más veloz en el fin que en el principio. Sin embargo el movimiento de los proyectiles es más lento al final que al principio: el primero aumenta de modo uniformemente disforme, y el segundo en cambio disminuye de modo uniformemente disforme.[9]

Domingo de Soto ya relacionaba dos aspectos de la física: el movimiento uniformemente disforme (movimiento uniformemente acelerado) y la caída de graves (resistencia interna). En su teoría combinaba la abstracción matemática con la realidad física, clave para la comprensión de las leyes de la naturaleza. Tenía una claridad rotunda acerca de este hecho y lo expresaba en ejemplos numéricos concretos. Clasificó los diferentes tipos de movimiento en:[nota 3]

  • Movimiento uniforme respecto al tiempo:

Es aquel por el que el mismo móvil en iguales intervalos de tiempo recorre iguales distancias, como se da perfectamente en el movimiento extremadamente regular del cielo.

  • Movimiento disforme con respecto al tiempo:

Es aquel por el cual, en partes iguales de tiempo son recorridas distancias desiguales, o en (tiempos) desiguales, (espacios) iguales.

  • Movimiento uniformemente disforme con respecto al tiempo:

Es el movimiento de tal modo disforme, que si dividimos según el tiempo, (la velocidad de) el punto medio de la proporción excede (la velocidad de) el extremo más lento lo que es excedida por el más rápido.

El movimiento uniformemente disforme respecto al tiempo es aquel cuya diformidad es tal, que si se le divide según el tiempo, es decir, según las partes que se suceden en el tiempo, en cada parte del movimiento del punto central excede del movimiento extremo el menor de esa misma parte en cantidad igual a aquella en la que él mismo es superado por el movimiento extremo más intenso.

Soto describió el movimiento de caída libre como ejemplo de movimiento uniformemente acelerado por primera vez, cuestión que solo aparecerá posteriormente en la obra de Galileo:[nota 4]

...este tipo de movimiento propiamente sucede en los (graves) naturalmente movidos y en los proyectiles. Donde un peso cae desde lo alto por un medio uniforme, se mueve más veloz en el fin que en el principio. Sin embargo el movimiento de los proyectiles es más lento al final que al principio: el primero aumenta de modo uniformemente disforme, y el segundo en cambio disminuye de modo uniformemente diforme.

Por lo tanto era aplicable la ley de la velocidad media para calcular el tiempo de caída:

Esta especie de movimiento es la propia de los cuerpos que se mueven con movimiento natural y la de los proyectiles.

En efecto, cada vez que cae una masa desde una cierta altura y en el seno de un medio homogéneo, se mueve al final más de prisa que al principio. Pero el movimiento de los proyectiles es más lento al final que al comienzo, y así el primero se intensifica, y el segundo se debilita uniformemente.

Movimiento diformente disforme con respecto al tiempo:

Es el movimiento en tal modo disforme, que si es dividido según el tiempo, no ocurre que el punto medio de cada parte en la misma proporción excede (en velocidad) a un extremo cuanto es excedido por el otro. Este tipo de movimiento es el que esperamos en los animales, donde se observa el aumento y la disminución.

Retrato de Galileo Galilei

Este fue un descubrimiento clave en física y base esencial para el posterior estudio de la gravedad por Galileo Galilei e Isaac Newton. Ningún científico de las universidades de París y Oxford de aquella época había conseguido describir la relación entre movimiento uniformemente disforme en el tiempo y la caída de los graves como lo hizo Soto.

Tras las ideas innovadoras sobre el movimiento de estos científicos, Galileo hizo un avance muy importante al introducir el método científico que enseña que no siempre se debe creer en las conclusiones intuitivas basadas en la observación inmediata, pues esto lleva a menudo a equivocaciones. Galileo realizó un gran número de experiencias en las que se iban cambiando ligeramente las condiciones del problema y midió los resultados en cada caso. De esta manera pudo extrapolar sus observaciones hasta llegar a entender un experimento ideal.[nota 5] En concreto, observó cómo un cuerpo que se mueve con velocidad constante sobre una superficie lisa se moverá eternamente si no hay rozamientos ni otras acciones externas sobre él.

Inmediatamente se presentó otro problema: ¿si la velocidad no lo revela, qué parámetro del movimiento indica la acción de fuerzas exteriores?; Galileo respondió también a esta pregunta, pero Newton lo hizo de manera más precisa: no es la velocidad sino su variación la consecuencia resultante de la acción de arrastrar o empujar un objeto. Esta relación entre fuerza y cambio de velocidad (aceleración) constituye la base fundamental de la mecánica clásica. Fue Isaac Newton (hacia 1690) el primero en dar una formulación completa de las leyes de la mecánica e inventó los procedimientos matemáticos necesarios para explicarlos y obtener información a partir de ellos.[nota 6]

Other Languages
Alemannisch: Newtonsche Gesetze
azərbaycanca: Nyuton qanunları
беларуская: Законы Ньютана
беларуская (тарашкевіца)‎: Законы Ньютана
български: Закони на Нютон
Mìng-dĕ̤ng-ngṳ̄: Newton ông-dông-hŏk dêng-lŭk
کوردیی ناوەندی: یاساکانی جووڵەی نیوتن
Kreyòl ayisyen: Twazyèm lwa Newton
interlingua: Leges de Newton
Bahasa Indonesia: Hukum gerak Newton
íslenska: Lögmál Newtons
lietuvių: Niutono dėsniai
latviešu: Ņūtona likumi
македонски: Њутнови закони
Nederlands: Wetten van Newton
norsk nynorsk: Newtons rørslelover
português: Leis de Newton
srpskohrvatski / српскохрватски: Newtonovi zakoni
Simple English: Newton's laws of motion
српски / srpski: Њутнови закони
Basa Sunda: Hukum gerak Newton
татарча/tatarça: Ньютон законнары
українська: Закони Ньютона
文言: 牛頓定律