Ley de los grandes números

En la teoría de la probabilidad, bajo el término genérico de ley de los grandes números se engloban varios teoremas .

 el comportamiento del 
promedio de una 
sucesión de 
variables aleatorias conforme aumenta su número de ensayos. 

Estos teoremas prescriben condiciones suficientes para garantizar que dicho promedio converge (en los sentidos explicados abajo) al promedio de las esperanzas de las variables aleatorias involucradas. Las distintas formulaciones de la ley de los grandes números (y sus condiciones asociadas) especifican la convergencia de formas distintas.

Las leyes de los grandes números explican por qué el promedio de una muestra al azar de una población de gran tamaño tenderá a estar cerca de la media de la población completa.

Cuando las variables aleatorias tienen una varianza finita, el teorema central del límite extiende nuestro entendimiento de la convergencia de su promedio describiendo la distribución de diferencias estandarizadas entre la suma de variables aleatorias y el valor esperado de esta suma: sin importar la distribución subyacente de las variables aleatorias, esta diferencia estandarizada converge a una variable aleatoria normal estándar.

La frase "ley de los grandes números" es también usada ocasionalmente para referirse al principio de que la probabilidad de que cualquier evento posible (incluso uno improbable) ocurra al menos una vez en una serie, incrementa con el número de eventos en la serie. Por ejemplo, la probabilidad de que un individuo gane la lotería es bastante baja; sin embargo, la probabilidad de que alguien gane la lotería es bastante alta, suponiendo que suficientes personas comprasen boletos de lotería.

Historia

La difusión es un ejemplo de la ley de los grandes números, aplicada a la química. Inicialmente, hay moléculas de soluto en el lado izquierdo de una barrera (línea púrpura) y ninguno a la derecha. Se elimina la barrera y el soluto se difunde para llenar toda el contenedor.
Arriba: con una sola molécula, el movimiento parece ser bastante aleatorio.
Medio: con más moléculas, existe una clara tendencia en la que el soluto llena el recipiente más y más uniformemente, pero también hay fluctuationes.
Abajo: con un enorme número de moléculas de soluto (demasiadas para verse), la aleatoriedad esencialmente desaparece: el soluto parece moverse suave y sistemáticamente desde las zonas de alta concentración a las zonas de baja concentración. En situaciones reales, los químicos pueden describir la difusión como un fenómeno macroscópico determinista (ver leyes de Fick), a pesar de su carácter aleatorio subyacente.

El matemático italiano Gerolamo Cardano (1501–1576) afirmó sin pruebas que la precisión de las estadísticas empíricas tienden a mejorar con el número de intentos.[4] A partir de entonces, se conoce con ambos nombres, pero se utiliza con mayor frecuencia la «ley de los grandes números».

Después de que Bernoulli y Poisson publicasen sus esfuerzos, otros matemáticos también contribuyeron al refinamiento de la ley, como Chebyshev,[6]

Other Languages