Lagrangiano

En física, un lagrangiano es una función escalar a partir de la cual se puede obtener la evolución temporal, las leyes de conservación y otras propiedades importantes de un sistema dinámico. De hecho, en física moderna el lagrangiano se considera el operador más fundamental que describe un sistema físico.

El término lleva el nombre del astrónomo y matemático italo-francés Joseph Louis de Lagrange. El concepto de un lagrangiano se introdujo en una reformulación de la mecánica clásica introducida por Lagrange, conocida como mecánica lagrangiana, en 1788. Esta reformulación fue necesaria con el fin de explorar la mecánica en sistemas alternativos de las coordenadas cartesianas, como las coordenadas polares, cilíndricas y esféricas, para las que la mecánica de Newton no era conveniente.[1]

El formalismo lagrangiano permite alcanzar tanto las leyes de Newton como las ecuaciones de Maxwell, los cuales pueden ser derivados como las ecuaciones de Euler-Lagrange de un lagrangiano clásico. Igualmente la forma del lagrangiano determina las propiedades básicas del sistema en teoría cuántica de campos.

Introducción

La mecánica de Lagrange tiene su origen como una formulación de la mecánica clásica. Es una formulación alternativa a la mecánica hamiltoniana. Se define el lagrangiano de un sistema de partículas como la diferencia entre su energía cinética y su energía potencial :

Históricamente el formalismo lagrangiano surgió dentro de la mecánica clásica para sistemas con un número finito de grados de libertad. Este lagrangiano permitía escribir las ecuaciones de movimiento de un sistema totalmente general que tenía restricciones de movimiento o era no-inercial de modo muy sencillo.

Más tarde el concepto se generalizó a sistemas con un número no finito de grados de libertad como los medios continuos o los campos físicos. Más tarde el concepto pudo generalizarse también a la mecánica cuántica, particularmente en la teoría cuántica de campos.

Formalismo matemático

El lagrangiano es una función escalar definida sobre un cierto espacio de posibles estados del sistema. En un sistema de un número finito de grados de libertad la acción física se define como una integral de línea sobre las trayectorias del movimiento (1), mientras que en un sistema continuo o sistema con un número no finito de grados de libertad la acción se define como una integral múltiple sobre un 4-volumen (2):

( 1),

( 2),

Las ecuaciones del movimiento pueden obtenerse a partir de la forma del lagrangiano, ya que sobre las trayectorias del movimiento real del sistema son tales que las integrales anteriores toman el valor mínimo posible. Conocida la forma del lagrangiano en un sistema de coordenadas, las ecuaciones de Euler-Lagrange particularizadas para el lagrangiano concreto son precisamente las ecuaciones de movimiento.

Número finito de grados de libertad

En el caso de un sistema con un número finito de grados de libertad, el espacio de estados es una variedad diferenciable finito-dimensional construida como el fibrado tangente TQ de una variedad n-dimensional y el lagrangiano es una función de la forma .

Una función lagrangiana es la expresión del lagrangiano en un sistema de coordenadas concreto, está relacionada con la energía cinética y la energía potencial del sistema. Por ejemplo para una partícula clásica que se mueve en el espacio euclídeo convencional bajo un campo de fuerzas conservativo dado por la función V(x,y,z), el lagrangiano usual usando coordenadas cartesianas puede representarse por la función lagrangiana:

( 3),

La función lagrangiana se escribe usualmente en términos de cualquier tipo de coordenadas generalizadas:

( 4),

En cuanto al lagrangiano intrínseco, puede escribirse en términos de cualquier función lagrangiana, si las coordenadas generalizadas usadas coinciden con una carta local el lagrangiano intrínseco se puede escribir como una función que satisface:

( 5),

Donde es el pushforward o diferencial del homeomorfismo que define la carta local. El lagrangiano definido en coordenadas locales y definido directamente sobre el espacio de estados están relacionados mediante:

( 6),

Las trayectorias que dan la evolución temporal de un sistema son curvas diferenciables sobre la variedad de configuración, que pueden calcularse a partir de las ecuaciones de Euler-Lagrange:

( 7),

Número infinito de grados de libertad

En sistemas con un número infinito de grados de libertad, es decir, en sistemas de la mecánica de medios continuos o la teoría clásica de campos, requieren una descripción más compleja en términos de densidad lagrangiana. Además en ese caso el espacio de configuración puede ser substancialmente más complicado que en el caso de sistemas de un grado finito. De hecho el espacio de configuración debe ser una variedad de dimensión infinita formada por todos las posibles variaciones que puede tener un campo sobre una 4-variedad o espacio-tiempo M, y de hecho en este caso las "trayectorias" no son variedades unidimensionales sino 4-variedades. Existe un modo riguroso y elegante de construir dicho tipo de variedad de configuración considerando fibrados tangentes sobre M, pero ese tipo de formalismo no será tratado aquí.

La densidad lagrangiana es una función del tipo (aún en las teorías en que el campo puede tomar complejo, existen razones físicas para seguir exigiendo que el lagrangiano sea una función real). Además el que la teoría sea local, es decir, que cumpla con ciertos requisitos de causalidad física, la densidad lagrangiana no debe contener derivadas superiores al segundo orden, de lo contrario ocurren ciertas violaciones extrañas de la causalidad.[n. 1]

Si consideramos ahora un observador concreto podemos derivar, al igual que hicimos para el caso con un número finito de grados de libertad, una expresión de la densidad lagrangiana en coordenadas, pudiéndose escribir la acción como:

( 8),

Dadas ciertas condiciones de contorno sobre el borde de una región , entonces las ecuaciones del movimiento vienen dadas por las ecuaciones de Euler-Lagrange:

( 9),

Incidentalmente, el lado izquierdo es la derivada funcional de la acción con respecto a .

Other Languages
العربية: لاغرانجيان
català: Lagrangià
فارسی: لاگرانژین
français: Lagrangien
galego: Lagranxiana
Հայերեն: Լագրանժյան
italiano: Lagrangiana
한국어: 라그랑지언
Nederlands: Lagrangiaan
polski: Lagranżjan
русский: Лагранжиан
slovenčina: Lagrangeova funkcia
slovenščina: Lagrangeeva funkcija
татарча/tatarça: Lagranjian
українська: Лагранжіан