Límite clásico

El límite clásico es la habilidad de una teoría física para aproximarse al comportamiento predicho por la mecánica clásica cuando el valor de cierto parámetro especial de estas teorías se aproxima un "valor clásico"; se usa en las teorías físicas que predicen un comportamiento no-clásico. Los casos más usuales de límite clásico son:

Límite clásico de la mecánica cuántica

Para conciliar las predicciones de la mecánica cuántica a nivel microscópico con las predicciones de la mecánica clásica a nivel macroscópico, Niels Bohr introdujo el principio de correspondencia dentro de la teoría cuántica. Dicho principio postula algunos de los argumentos de continuidad deben ser aplicados al límite clásico de los sistemas cuánticos a medida que los valores de la constante de Planck se aproximan a cero.

En la mecánica cuántica, debido al principio de incertidumbre de Heisenberg, un electrón no puede estar nunca en reposo; tiene siempre que tener una energía cinética distinta de cero, un resultado que no se encuentra en la mecánica clásica. Por ejemplo, si consideramos algo relativamente más grande que un electrón, tal como una pelota de fútbol, el principio de incertidumbre predice que no puede tener una energía cinética igual a cero, pero la incertidumbre en la energía cinética es tan pequeña, que la pelota de fútbol puede parecer que estuviese en reposo, y por esta razón parece obedecer a la mecánica clásica. En general, si grandes energías y grandes objetos (en comparación con el tamaño y los niveles de energía de un electrón) son considerados en la mecánica cuántica, los resultados parecerán obedecer a la mecánica clásica.

De acuerdo con el principio de correspondencia de Bohr, todas las ecuaciones de la mecánica cuántica no-relativista deben coincidir con los resultados de la mecánica clásica cuando en ellos se practica adecuadamente el límite clásico. Así por ejemplo el límite clásico de la ecuación de Schrödinger para la función de onda dada por:

( 1)

Resulta idéntica a la ecuación de Hamilton-Jacobi de la mecánica clásica. Un cálculo directo lleva de hecho a que la ecuación de Schrödinger con la substitución anterior se puede escribir como:

( 2)

Interpretando la fase de la onda como la magnitud de acción dividida de la constante de Planck, y haciendo tender esta a cero se llega al límite clásico. Puede verse alternativamente que a medida que la masa del objeto es más y más grande se recupera igualmente el límite clásico. Lo cual explica porqué los cuerpos macroscópicos se comportan "clásicamente" aún cuando la constante de Planck no sea exactamente cero.

Other Languages
العربية: حد كلاسيكي
français: Limite classique
中文: 经典极限