Interpolación polinómica de Lagrange

En análisis numérico, el polinomio de Lagrange, llamado así en honor a Joseph-Louis de Lagrange, es una forma de presentar el polinomio que interpola un conjunto de puntos dado. Lagrange publicó este resultado en 1795, pero lo descubrió Edward Waring en 1779 y fue redescubierto más tarde por Leonhard Euler en 1783.[1] Dado que existe un único polinomio interpolador para un determinado conjunto de puntos, resulta algo engañoso llamar a este polinomio el polinomio interpolador de Lagrange. Un nombre más apropiado es interpolación polinómica en la forma de Lagrange.

En esta imagen se muestran, para cuatro puntos ((−9, 5), (−4, 2), (−1, −2), (7, 9)), la interpolation polinómica (cúbica) L(x), que es la suma de las bases polinómicas escaladas y0l0(x), y1l1(x), y2l2(x) y y3l3(x). La interpolación polinómica pasa exactamente por los cuatro puntos (llamados puntos de control) y cada base polinómica escalada pasa por su respectivo punto de control y se anula cuando x corresponde a los otros puntos de control.

Definición

Dado un conjunto de k + 1 puntos

donde todos los xj se asumen distintos, el polinomio interpolador en la forma de Lagrange es la combinación lineal

de bases polinómicas de Lagrange

Other Languages