Interacción de configuraciones

En mecánica cuántica, la interacción de configuraciones (IC) es un método post- Hartree-Fock para resolver la ecuación de Schrödinger no relativista, dentro de la aproximación de Born-Oppenheimer, para sistemas multielectrónicos. La principal aplicación es encontrar los niveles energéticos de un átomo con varios electrones.

Explicación

Si cada configuración electrónica se expresa como un determinante de Slater, la interacción entre configuraciones electrónicas se expresa como mezcla entre esos determinantes. En general, se trata de un método computacionalmente mucho más costoso que Hartree-Fock y que se hace inviable a partir de sistemas de tamaño medio (del orden de decenas de partículas).

En contraste con el método Hartree-Fock, la IC consigue recuperar parte de la correlación electrónica a partir de una función de onda variacional, que es una combinación lineal de determinantes construidos generalmente a partir de espinores,

donde Ψ es generalmente el estado electrónico fundamental del sistema, y el superíndice SD indica que se tienen en cuenta las «excitaciones» simples y dobles a partir del estado fundamental (hay muchas otras formas de construir una IC, pero esta es relativamente común). Al resolver las ecuaciones de IC, se obtienen también aproximaciones a los estados excitados, que difieren en los valores de los coeficientes ci. Si la expansión contiene a todos los determinantes de Slater de la simetría adecuada, es una interacción de configuraciones completa (o exhaustiva) da la mejor energía posible dentro de las bases de orbitales utilizadas, y a los niveles de aproximación mencionados. En otros casos, se obtienen mejoras más modestas respecto al nivel Hartree-Fock, a un costo computacional más asequible. En cualquier caso, al ser un método variacional, a cada nivel de cálculo se obtiene una cota superior a la energía exacta.

El procedimiento IC lleva a una ecuación matricial general de valores propios:

donde c es el vector de coeficientes, e es la matriz de valores propios, y los elementos del operador hamiltoniano y de las matrices solapamientos son, respectivamente,

.

Los determinantes de Slater se construyen a partir de conjuntos de espinores ortonormales, de forma que , haciendo que sea la matriz identidad y simplificando la ecuación matricial superior.

Other Languages