Integral de Lebesgue

La integral de una función no negativa puede ser interpretada como el área bajo la curva.

En matemática, la integral de Lebesgue es un operador matemático que extiende el concepto de integral de Riemann a una clase más amplia de funciones, así como extiende los posibles dominios en los cuales estas integrales pueden definirse. Es una herramienta que resuelve casos que no pueden la integral o la de Stieljes.

La integral de Lebesgue desempeña un papel muy importante en el análisis real, la teoría de la medida, teoría de probabilidades y en muchas otras ramas de la matemática. Debe su nombre al matemático francés Henri Lebesgue (1875-1941) que propuso la noción y demostró las principales propiedades de este tipo de integral en 1904.[1]

Introducción

Hacía mucho que se sabía que para funciones no negativas con una curva suficientemente suave (como una función continua en intervalos cerrados) el área bajo la curva podía definirse como la integral y calcularse usando técnicas de aproximación de la región mediante rectángulos o polígonos. Pero como se necesitaba considerar funciones más irregulares, se hizo evidente que una aproximación más cuidadosa era necesaria para definir una integral que se ajustara a dichos problemas.

La integral de una función f entre los límites de integración a y b puede interpretarse como el área bajo la gráfica de f. Esto es fácil de entender para funciones que nos son familiares como los polinomios, la exponencial o logarítmica, pero... ¿qué quiere decir para funciones un poco más exóticas o con comportamiento errático? En general, ¿cuál es la clase de funciones para las cuales el concepto de "área bajo la curva" tiene sentido? La respuesta a esta interrogante tiene importancia teórica y práctica fundamental.

Como parte del gran avance de las matemáticas en el siglo XIX, se hicieron varios intentos de poner sobre bases sólidas el cálculo integral. La integral de Riemann, propuesta por Bernhard Riemann (1826-1866), sentó la primera base sólida sobre la cual se desarrolló la integral. La definición de Riemann empieza con la construcción de una sucesión de áreas rectangulares fácilmente calculables que convergen a la integral de una función dada. Esta definición es buena en el sentido que provee las repuestas adecuadas y esperadas para muchos problemas ya resueltos, así como importantes y útiles resultados para muchos otros problemas.

Sin embargo, la integración de Riemann no funciona bien al tomar límites de sucesiones de funciones, dificultando su análisis. Esto es de vital importancia, por ejemplo, en el estudio de la serie de Fourier, la transformada de Fourier y otros temas. La integral de Lebesgue permite saber cómo y cuándo es posible tomar límites bajo el signo de la integral.

La definición de Lebesgue también hace posible calcular integrales para una clase más amplia de funciones. Por ejemplo, la función de Dirichlet, que es 0 cuando su argumento es irracional y 1 en otro caso (racional), tiene integral de Lebesgue, pero no de Riemann.

Other Languages