Inhibidor enzimático

Modelo estructural de la proteasa del virus del sida unida a un inhibidor de la proteasa, el ritonavir. La estructura de la proteasa se muestra mediante cintas de color rojo, azul y amarillo, mientras que el inhibidor es representado por una estructura de esferas y varillas cerca del centro de la proteasa. Modelo creado a partir del PDB 1HXW.

Los inhibidores enzimáticos son moléculas que se unen a enzimas y disminuyen su actividad. Puesto que el bloqueo de una enzima puede matar a un organismo patógeno o corregir un desequilibrio metabólico, muchos medicamentos actúan como inhibidores enzimáticos. También son usados como herbicidas y pesticidas. Sin embargo, no todas las moléculas que se unen a las enzimas son inhibidores; los activadores enzimáticos se unen a las enzimas e incrementan su actividad.

La unión de un inhibidor puede impedir la entrada del sustrato al sitio activo de la enzima y/u obstaculizar que la enzima catalice su reacción correspondiente. La unión del inhibidor puede ser reversible o irreversible. Normalmente, los inhibidores irreversibles reaccionan con la enzima de forma covalente y modifican su estructura química a nivel de residuos esenciales de los aminoácidos necesarios para la actividad enzimática. En cambio, los inhibidores reversibles se unen a la enzima de forma no covalente, dando lugar a diferentes tipos de inhibiciones, dependiendo de si el inhibidor se une a la enzima, al complejo enzima-sustrato o a ambos.

Muchos medicamentos son inhibidores enzimáticos, por lo que su descubrimiento y mejora es un campo de investigación activo en la bioquímica y la farmacología. La validez de un inhibidor enzimático medicinal suele venir determinada por su especificidad (su incapacidad de unirse a otras proteínas) y su potencia (su constante de disociación, la cual indica la concentración necesaria para inhibir a una enzima). Una alta especificidad y potencia asegura que el medicamento va a tener pocos efectos secundarios y por tanto una baja toxicidad.

Los inhibidores enzimáticos también son usados en la naturaleza y están implicados en la regulación del metabolismo. Por ejemplo, las enzimas en una ruta metabólica pueden ser inhibidas por los productos resultantes de sus respectivas rutas. Este tipo de retroalimentación negativa retarda el flujo a través de la ruta cuando los productos comienzan a acumularse y es una manera importante de mantener la homeostasis en una célula. Otros inhibidores enzimáticos celulares son proteínas que se unen específicamente e inhiben una diana enzimática. Esto puede ayudar a controlar enzimas que pueden ser dañinas para la célula, como las proteasas o nucleasas. Un buen ejemplo es el inhibidor de la ribonucleasa, que se une a esta enzima en una de las interacciones proteína–proteína más fuertes conocidas.[1] Como inhibidores enzimáticos naturales también cabe destacar los venenos, que son usados como defensa contra los depredadores o como forma de matar a una presa.

Inhibidores o sustratos reversibles

Los inhibidores reversibles se unen a las enzimas mediante interacciones no covalentes tales como los puentes de hidrógeno, las interacciones hidrofóbicas y los enlaces iónicos. Los enlaces débiles múltiples entre el inhibidor y el sitio activo se combinan para producir una unión fuerte y específica. Al contrario de lo que ocurre con el sustrato y los inhibidores irreversibles, los inhibidores reversibles generalmente no experimentan reacciones químicas cuando se unen a la enzima y pueden ser eliminados fácilmente por dilución o por diálisis.

Tipos de inhibidores reversibles

Inhibición competitiva: el sustrato (S) y el inhibidor (I) compiten por el sitio activo (cavidad de la enzima).

Existen tres tipos de inhibidores reversibles. Se clasifican en base al efecto producido por la variación de la concentración del sustrato de la enzima en el inhibidor.[2]

  • En la inhibición competitiva, el sustrato y el inhibidor no se pueden unir a la misma enzima al mismo tiempo, como se muestra en la figura de la derecha. Esto generalmente ocurre cuando el inhibidor tiene afinidad por el sitio activo de una enzima en el que también se une el sustrato; el sustrato y el inhibidor compiten para el acceso al sitio activo de la enzima. Este tipo de inhibición se puede superar con concentraciones suficientemente altas del sustrato, es decir, dejando fuera de competición al inhibidor. Los inhibidores competitivos son a menudo similares en estructura al sustrato verdadero (ver ejemplos expuestos más abajo).
  • En la inhibición no competitiva, el inhibidor se puede unir a la enzima al mismo tiempo que el sustrato. Sin embargo, la unión del inhibidor afecta la unión del sustrato, y viceversa. Este tipo de inhibición se puede reducir, pero no superar al aumentar las concentraciones del sustrato. Aunque es posible que los inhibidores de tipo mixto se unan en el sitio activo, este tipo de inhibición resulta generalmente de un efecto alostérico donde el inhibidor se une a otro sitio que no es el sitio activo de la enzima. La unión del inhibidor con el sitio alostérico cambia la conformación (es decir, la estructura terciaria o la forma tridimensional) de la enzima de modo que la afinidad del sustrato por el sitio activo se reduce.
  • La inhibición mixta, ,es una forma de inhibición mixta donde la unión del inhibidor con la enzima reduce su actividad pero no afecta la unión con el sustrato. Como resultado, el grado de inhibición depende solamente de la concentración de inhibidor.

Descripción cuantitativa de la inhibición reversible

La inhibición reversible puede ser descrita cuantitativamente en términos de la unión del inhibidor a la enzima y al complejo enzima-sustrato, y sus efectos en las constantes cinéticas de la enzima. En el esquema clásico de Michaelis-Menten mostrado abajo, una enzima (E) se une a su sustrato (S) para formar el complejo enzima-sustrato (ES). En la catálisis, este complejo se rompe para liberar el producto (P) y la enzima (E). El inhibidor (I) puede unirse tanto a (E) como a (ES) con las constantes de disociación Ki o Ki', respectivamente.

  • Los inhibidores competitivos se pueden unir a (E), pero no a (ES). La inhibición competitiva aumenta el valor de Km (es decir, el inhibidor interfiere con la unión del sustrato), pero no afecta a la Vmax (el inhibidor no obstaculiza la catálisis en (ES) porque no se puede unir a (ES)).[3]
  • Los inhibidores no competitivos tienen afinidades idénticas por (E) y (ES) (Ki = Ki'). La inhibición no competitiva no cambia la Km (es decir, no afecta a la unión del sustrato) pero disminuye la Vmax (es decir, la unión del inhibidor obstaculiza la catálisis).[3]
  • Los inhibidores de tipo mixto se unen tanto a (E) como a (ES), pero sus afinidades por estas dos formas de enzimas son distintas (KiKi'). Por lo tanto, los inhibidores de tipo mixto interfieren con la unión del sustrato (incremento de Km) y dificulta la catálisis en el complejo (ES) (disminución de la Vmax).[3]
Esquema cinético aplicable a los inhibidores enzimáticos reversibles.

Cuando una enzima tiene múltiples sustratos, los inhibidores pueden mostrar distintos tipos de inhibiciones dependiendo del sustrato que se considere, ya que el sitio activo posee dos diferentes lugares para la unión con el sustrato en el mismo sitio activo, uno para cada sustrato. Por ejemplo, un inhibidor puede competir con el sustrato A por el primer sitio de unión, pero ser un inhibidor no competitivo con respecto al sustrato B en el segundo sitio de unión.[3]

Medición de las constantes de disociación en un inhibidor reversible

Diagramas de Lineweaver-Burke de los diferentes tipos de inhibidores enzimáticos reversibles. La flecha muestra el efecto producido por el incremento de las concentraciones de inhibidor.

Según lo observado arriba, un inhibidor enzimático está caracterizado por sus dos constantes de disociación, Ki y Ki', de la enzima y del complejo enzima-sustrato, respectivamente. La constante del complejo enzima-inhibidor Ki puede ser medida directamente por varios métodos. Un método extremadamente exacto es la calorimetría isoterma de titulación, en donde el inhibidor es titulado en una solución de enzimas y el calor liberado o absorbido es medido.[5] a una ecuación de Michaelis–Menten modificada:

donde los factores de modificación α y α' son definidos por la concentración del inhibidor y sus dos constantes de disociación

Así, en presencia del inhibidor, la efectividad de la enzima Km y Vmax es ahora (α/α')Km y (1/α')Vmax, respectivamente. Sin embargo, la ecuación de Michaelis-Menten modificada asume que la unión del inhibidor a la enzima alcanza el equilibrio, el cual puede ser un proceso muy lento para los inhibidores con constantes secundarias nanomolares de disociación. En estos casos, es usualmente más práctico tratar al inhibidor de unión fuerte como un inhibidor irreversible (ver abajo). Sin embargo, todavía puede ser posible estimar Ki' cinéticamente si Ki es medido independientemente.[5]

Los efectos de diferentes tipos de inhibidores enzimáticos reversibles en la actividad enzimática pueden ser visualizados usando la representación gráfica de la ecuación de Michaelis–Menten, mediante los diagramas de Lineweaver-Burke o de Eadie-Hofstee. Por ejemplo, en los diagramas de Lineweaver-Burk a la derecha, las líneas de la inhibición competitiva intersecan el eje-y, ilustrando que tales inhibidores no afectan a la Vmax. De igual manera, las líneas de la inhibición no competitiva intersecan el eje-x, mostrando que estos inhibidores no afectan a la Km. Sin embargo, puede ser complicado estimar Ki y Ki' con precisión en estos diagramas, por lo que es recomendable estimar estas constantes usando métodos más fiables de regresión no lineal,[6] según lo descrito arriba.

Casos especiales

  • El mecanismo de la inhibición parcialmente competitiva es similar al de la inhibición no competitiva, excepto que el complejo EIS tiene actividad catalítica, la cual decrece o incluso aumenta (activación parcialmente competitiva) en comparación al complejo enzima-sustrato (ES). Esta inhibición suele exhibir un valor más bajo de Vmax, pero un valor de Km inalterado.[3]
  • La inhibición acompetitiva se produce cuando el inhibidor se une sólo al complejo enzima-sustrato, no a la enzima libre. El complejo EIS es catalíticamente inactivo. Esta forma de inhibición es rara y causa una disminución tanto en el valor de Vmax como en el de Km.[3]
  • La inhibición por sustrato y por producto es donde el sustrato o el producto de una reacción enzimática inhiben la actividad enzimática. Este tipo de inhibición puede seguir los patrones competitivos, no competitivos o mixtos. En la inhibición por sustrato hay una disminución progresiva de la actividad a altas concentraciones de sustrato. Esto puede indicar la existencia de dos sitios de unión entre sustrato y enzima. Cuando hay poco sustrato, se ocupa el sitio de alta afinidad y sigue la cinética normal. Sin embargo, a altas concentraciones, el segundo sitio de inhibición se ocupa, inhibiendo a la enzima.[7] La inhibición por parte del producto es a menudo una característica reguladora en el metabolismo y puede ser una forma de retroalimentación negativa.
  • La inhibición lenta y fuerte se produce cuando el complejo enzima-inhibidor EI inicial experimenta una isomerización a un segundo complejo más fuertemente unido, EI*, pero el proceso total de la inhibición es reversible. Esto se manifiesta como un lento aumento en la inhibición enzimática. En estas condiciones, la tradicional cinética de Michaelis–Menten da un valor falso para Ki, el cual depende del tiempo. El verdadero valor de Ki puede ser obtenido a través de un análisis más complejo de las constantes de rango de encendido (kon) y apagado (koff) para la asociación del inhibidor (véase la inhibición irreversible para más información).[7]

Ejemplos de inhibidores reversibles

Estructura molecular del ritonavir, un inhibidor de proteasa de carácter peptídico.

Puesto que las enzimas han evolucionado para unirse a sus sustratos fuertemente, y la mayoría de los inhibidores reversibles se unen al sitio activo de las enzimas, es poco sorprendente que algunos de estos inhibidores sean muy similares en estructura a los sustratos de sus dianas. Como ejemplo de estos imitadores de sustratos caben destacar los inhibidores de la proteasa, una clase muy efectiva de fármacos antirretrovirales usados para tratar el VIH. La estructura del ritonavir (figura de la derecha), un inhibidor de la proteasa, consiste en un péptido con tres enlaces peptídicos. Dicha estructura se asemeja a la proteína que es el sustrato de la proteasa del VIH, por lo que ambos compiten por la unión al sitio activo de la enzima.[8]
Los inhibidores enzimáticos son a menudo diseñados para imitar el estado de transición o intermedio de una reacción catalizada por una enzima. Esto asegura que el inhibidor cambie el estado de transición estableciendo un efecto en la enzima, lo que resulta en una afinidad de unión mejor (baja Ki) que los diseños basados en sustratos. Un ejemplo de un inhibidor en ese estado de transición es el fármaco antiviral oseltamivir, que imita la naturaleza plana del anillo del ion oxonio en la reacción de la neuraminidasa, una enzima del virus.[9]

Estructura molecular del tipranavir, un inhibidor de proteasa de carácter no peptídico.

Sin embargo, no todos los inhibidores están basados en la estructura del sustrato. Por ejemplo, la estructura de otro inhibidor de la proteasa del VIH, el tipranavir, (representada a la derecha), no está basada en un péptido y no tiene similitudes estructurales obvias con la proteína sustrato. Estos inhibidores no peptídicos pueden ser más estables que los inhibidores que contienen enlaces peptídicos porque estos no son sustratos para las peptidasas, con lo que son menos propensas a ser degradadas en la célula.[10]

En el diseño de fármacos es importante considerar las concentraciones de sustrato a las cuales se expondrá la enzima en cuestión. Por ejemplo, algunos inhibidores de proteínas quinasas tienen estructuras químicas que son similares al adenosín trifosfato, uno de los sustratos de esta enzima. Sin embargo, ciertos fármacos que son simplemente inhibidores competitivos tendrán que competir con altas concentraciones de ATP en la célula. Las proteínas quinasas también pueden ser inhibidas por competencia en el sitio de unión donde la quinasa interactúa con sus proteínas sustrato, y la mayoría de las proteínas presentes en el interior de una célula se encuentran a concentraciones mucho menores que las concentraciones de ATP. En consecuencia, si dos inhibidores de proteínas quinasas se unen en sus sitios activos con afinidad similar, pero solo uno tiene que competir con el ATP, entonces el inhibidor competitivo en el sitio de unión de la proteína inhibirá a la enzima más eficientemente.[11]

Other Languages
العربية: مثبط إنزيم
čeština: Inhibice
Deutsch: Enzymhemmung
Bahasa Indonesia: Inhibitor enzim
日本語: 酵素阻害剤
한국어: 효소 억제제
srpskohrvatski / српскохрватски: Inhibicija enzimskih reakcija
slovenščina: Encimski inhibitor
српски / srpski: Inhibitor enzima
Tiếng Việt: Chất kìm hãm enzym
中文: 酶抑制剂