Inecuación

Del mismo modo en que se hace la diferencia de igualdad y ecuación, una inecuación que es válida para todas las variables se llama inecuación incondicional y las que son válidas solo para algunos valores de las variables se conocen como inecuaciones condicionales.[1] Los valores que verifican la desigualdad, son sus soluciones.

  • Ejemplo de inecuación incondicional: .
  • Ejemplo de inecuación condicional: .

Clasificación

Los criterios más comunes de clasificación del ejemplo: .

    • De dos incógnitas. Ejemplo: .
    • De tres incógnitas. Ejemplo: .
    • etc.
  • Según la potencia de la incógnita,
    • De primer grado o lineal. Cuando el mayor exponente de la incógnita de la inecuación es uno. Ejemplo: .
    • De segundo grado o cuadrática. Cuando el mayor exponente de cualquiera de sus incógnitas es dos. Ejemplo: .
    • De tercer grado o cúbica. Cuando el mayor exponente de cualquiera de sus incógnitas es tres. Ejemplo: .
    • etc.

Nota: estas clasificaciones no son mutuamente excluyentes, como se muestra en el último ejemplo.

Other Languages