Homomorfismo de grupos

Imagen de un homomorfismo de grupos (h) de G(izquierda) en H(derecha). El óvalo menor dentro de H es la imagen de h. N es el núcleo de h y aN es una clase lateral de N.

En álgebra, un homomorfismo de grupos es una función entre grupos que preserva la operación binaria.

Dados dos grupos y la aplicación es un homomorfismo de grupos si se verifica que para todos los pares de elementos

donde la operación en el lado izquierdo de la ecuación () es la ley de composición interna en , y la operación del lado derecho de la ecuación () es la ley de composición interna en .[1]

Si la aplicación es biyectiva entonces es un isomorfismo de grupos, lo que significa que ambos grupos tienen la misma estructura algebraica (son isomorfos), y sólo se diferencian por los símbolos utilizados para denotar los elementos y la operación.

Definiciones

Dados dos grupos y , en el que cada grupo está compuesto por un conjunto de elementos y una ley de composición interna entre ellos (no necesariamente la misma), es posible definir una función que asigne a cada elemento g de un elemento h de :

Dicha función es un homomorfismo de grupos si se verifica que para todos los pares de elementos

donde la operación en el lado izquierdo de la ecuación () es la ley de composición interna en , y la operación del lado derecho de la ecuación () es la ley de composición interna en .[1]

Imagen de

El conjunto de todos los elementos de que son la imagen de algún elemento de se llama la imagen de la aplicación, y se denota o .[2] Formalmente:

La imagen de es un subgrupo de .

El núcleo o kernel

El conjunto de todos los elementos de cuya imagen es el elemento identidad de se llama núcleo (kernel) de :

El núcleo de es un subgrupo normal de G. El núcleo es importante porque no sólo determina qué elementos tienen por imagen la identidad, sino también qué elementos tienen la misma imagen:[3]

Dado
ya que

Los conjuntos de todos los elementos que comparten una misma imagen son las clases laterales del núcleo.

Other Languages