Historia de la geometría

La geometría es una de las ciencias más antiguas. Inicialmente, constituía un cuerpo de conocimientos prácticos en relación con las longitudes, áreas y volúmenes. En el antiguo Egipto estaba muy desarrollada, según los textos de Herodoto, Estrabón y Diodoro Sículo. Euclides, en el siglo III a. C. configuró la geometría en forma axiomática, tratamiento que estableció una norma a seguir durante muchos siglos: la geometría euclidiana descrita en « Los Elementos».

El estudio de la astronomía y la cartografía, tratando de determinar las posiciones de estrellas y planetas en la esfera celeste, sirvió como importante fuente de resolución de problemas geométricos durante más de un milenio. René Descartes desarrolló simultáneamente el álgebra y la geometría analítica, marcando una nueva etapa, donde las figuras geométricas, tales como las curvas planas, podrían ser representadas analíticamente, es decir, con funciones y ecuaciones. La geometría se enriquece con el estudio de la estructura intrínseca de los entes geométricos que analizan Euler y Gauss, que condujo a la creación de la topología y la geometría diferencial.

La Geometría como una de las Artes Liberales y Euclides.

La geometría en el Antiguo Egipto

Las primeras civilizaciones mediterráneas adquieren poco a poco ciertos conocimientos geométricos de carácter eminentemente práctico. La geometría en el antiguo Egipto estaba muy desarrollada, como admitieron Heródoto, Estrabón y Diodoro, que aceptaban que los egipcios habían "inventado" la geometría y la habían enseñado a los griegos; aunque lo único que ha perdurado son algunas fórmulas –o, mejor dicho, algoritmos expresados en forma de "receta"– para calcular volúmenes, áreas y longitudes, cuya finalidad era práctica. Con ellas se pretendía, por ejemplo, calcular la dimensión de las parcelas de tierra, para reconstruirlas después de las inundaciones anuales. De allí el nombre γεωμετρία, geometría: "medición de la tierra" (de γῆ (gê) 'tierra' más μετρία (metría), 'medición').

Los denominados Papiro de Ahmes y Papiro de Moscú muestran conjuntos de métodos prácticos para obtener diversas áreas y volúmenes, destinados al aprendizaje de escribas. Es discutible si estos documentos implican profundos conocimientos o representan en cambio todo el conocimiento que los antiguos egipcios tenían sobre la geometría.

Los historiadores antiguos nos relataron que el conocimiento de esta civilización sobre geometría –así como los de las culturas mesopotámicas– pasó íntegramente a la cultura griega a través de Tales de Mileto, los pitagóricos y, esencialmente, de Euclides.

La Geometría griega

La Geometría griega antes de Euclides

La primera demostración del teorema de Pitágoras Probablemente usó un diagrama como el que se muestra.

La Geometría Griega fue la primera en ser formal. Parte de los conocimientos concretos y prácticos de tesis. La veracidad de la tesis dependerá de la validez del razonamiento con el que se ha extraído (esto será estudiado por Aristóteles al crear la Lógica) y de la veracidad de las hipótesis. Pero entonces debemos partir de hipótesis ciertas para poder afirmar con rotundidad la tesis. Para poder determinar la veracidad de las hipótesis, habrá que considerar cada una como tesis de otro razonamiento, cuyas hipótesis deberemos también comprobar. Se entra aparentemente en un proceso sin fin en el que, indefinidamente, las hipótesis se convierten en tesis a probar.

Euclides y Los elementos

Fragmento de uno de los Papiros de Oxirrinco con unas líneas de Los elementos de Euclides.

Euclides, vinculado al Museo de Alejandría y a su Biblioteca, zanja la cuestión al proponer un sistema de estudio en el que se da por sentado la veracidad de ciertas proposiciones por ser intuitivamente claras, y deducir de ellas todos los demás resultados. Su sistema se sintetiza en su obra cumbre, Los elementos, modelo de sistema axiomático-deductivo. Sobre tan sólo cinco postulados y las definiciones que precisa construye toda la Geometría y la Aritmética conocidas hasta el momento. Su obra, en trece volúmenes, perdurará como única verdad geométrica hasta entrado el siglo XIX.

Entre los postulados en los que Euclides se apoya hay uno (el quinto postulado) que trae problemas desde el principio. No se ponía en duda su veracidad, pero tal y como aparece expresado en la obra, muchos consideran que seguramente podía deducirse del resto de postulados. Durante los siguientes siglos, uno de los principales problemas de la Geometría será determinar si el V postulado es o no independiente de los otros cuatro, es decir, si es necesario considerarlo como un postulado o es un teorema, es decir, puede deducirse de los otros, y por lo tanto colocarse entre el resto de resultados de la obra.

Después de Euclides

Euclides casi cierra definitivamente la geometría griega –y por extensión la del mundo antiguo–, a excepción de las figuras de Arquímedes y Apolonio de Perge.

Arquímedes analizó exhaustivamente las secciones cónicas, e introdujo en geometría otras curvas como la espiral que lleva su nombre, aparte de su famoso cálculo del volumen de la esfera, basado en los del cilindro y el cono.

Esquema de las tres secciones cónicas: elipse, parábola e hipérbola (más la circunferencia).
Secciones Conicas.svg

Apolonio trabajó en varias construcciones de tangencias entre círculos, así como en secciones cónicas y otras curvas.

Los tres problemas geométricos de la Antigüedad

La geometría griega era incapaz de resolver tres famosos problemas geométricos (que heredarán los matemáticos posteriores), puesto que debían ser resueltos utilizando únicamente la regla y compás «ideales», únicos instrumentos válidos en la geometría griega. Estos tres problemas son los siguientes:

La duplicación del cubo

Cuenta la leyenda que una terrible peste asolaba la ciudad de Atenas, hasta el punto de llevar a la muerte a Pericles. Una embajada de la ciudad fue al oráculo de Delfos, consagrado a Apolo, para consultar qué se debía hacer para erradicar la mortal enfermedad. Tras consultar al Oráculo, la respuesta fue que se debía duplicar el altar consagrado a Apolo en la isla de Delos. El altar tenía una peculiaridad: su forma cúbica. Prontamente, los atenienses construyeron un altar cúbico cuyos lados eran el doble de las del altar de Delos, pero la peste no cesó, se volvió más mortífera. Consultado de nuevo, el oráculo advirtió a los atenienses que el altar no era el doble de grande, sino ocho veces mayor, puesto que el volumen del cubo es el cubo de su lado (). Nadie supo cómo construir un cubo cuyo volumen fuese exactamente el doble del volumen de otro cubo dado, y el problema matemático persistió durante siglos (no así la enfermedad).

La trisección del ángulo

Este problema consiste en dividir un ángulo cualquiera en tres ángulos iguales, empleando únicamente la regla y el compás, de manera que la suma de las medidas de los nuevos tres ángulos sea exactamente la medida del primero.

La cuadratura del círculo

La cuadratura del círculo consiste en tratar de obtener un cuadrado cuya área mida exactamente lo mismo que el área de un círculo dado. Anaxágoras fue el primero en intentar resolverlo, dibujando en las paredes de su celda. Fue apresado por explicar diversos fenómenos que los griegos atribuían a los dioses. Tampoco pudo ser resuelto por los geómetras de la antigüedad, y llegó a ser el paradigma de lo imposible. Como curiosidad, el filósofo inglés David Hume llegó a escribir un libro con supuestos métodos para resolver el problema. Hume no tenía suficientes conocimientos matemáticos, y nunca aceptó que sus métodos eran fallidos.

La Geometría en la Edad Media

Durante los siguientes siglos la Matemática comienza nuevos caminos de la mano de hindúes y árabes en Trigonometría y Álgebra (el uso de la notación posicional y del cero), aunque relacionadas con la Astronomía y la Astrología; pero en geometría apenas hay nuevas aportaciones. En Occidente, a pesar de que la Geometría es una de las siete Artes liberales (encuadrada en el Quadrivium), las escuelas y universidades se limitan a enseñar los "Elementos", y no hay aportaciones.

La Geometría Proyectiva

Es en el Renacimiento cuando las nuevas necesidades de representación del arte y de la técnica empujan a ciertos humanistas a estudiar propiedades geométricas para obtener nuevos instrumentos que les permitan representar la realidad. Aquí se enmarca la figura del matemático y arquitecto Luca Pacioli, de Leonardo da Vinci, de Alberto Durero, de Leone Battista Alberti, de Piero della Francesca, por citar sólo algunos. Todos ellos, al descubrir la perspectiva y la sección, crean la necesidad de sentar las bases formales en la que cimentar las nuevas formas de Geometría que ésta implica: la Geometría proyectiva, cuyos principios fundamentales aparecen de la mano de Desargues en el siglo XVII. Esta nueva geometría de Desargues fue estudiada ampliamante ya por Pascal o por de la Hire, pero debido al interés suscitado por la Geometría Cartesiana y sus métodos, no alcanzó tanta difusión como merecía hasta la llegada a principios del siglo XIX de Gaspard Monge en primer lugar y sobre todo de Poncelet.

La Geometría Cartesiana

Pero es sin duda la aparición de la geometría analítica lo que marca la Geometría en la Edad Moderna. Descartes propone un nuevo método de resolver problemas geométricos, y por extensión, de investigar en geometría.

El nuevo método analiza la geometría utilizando ecuaciones algebraicas. Se cambia la regla y compás clásicos por expresiones numéricas que se pueden representar mediante coordenadas cartesianas. Utilizando notación actual, dicho método se expresa así:

En un plano se trazan dos rectas perpendiculares (ejes) –que por convenio se trazan de manera que una de ellas sea horizontal y la otra vertical–, y cada punto del plano queda unívocamente determinado por las distancias de dicho punto a cada uno de los ejes, siempre y cuando se dé también un criterio para determinar sobre qué semiplano determinado por cada una de las rectas hay que tomar esa distancia, criterio que viene dado por un signo. Ese par de números, las coordenadas, quedará representado por un par ordenado , siendo la distancia a uno de los ejes (por convenio será la distancia al eje vertical) e la distancia al otro eje (al horizontal).

En la coordenada , el signo positivo (que suele omitirse) significa que la distancia se toma hacia la derecha del eje vertical (eje de ordenadas), y el signo negativo (nunca se omite) indica que la distancia se toma hacia la izquierda. Para la coordenada , el signo positivo (también se suele omitir) indica que la distancia se toma hacia arriba del eje horizontal (eje de abscisas), tomándose hacia abajo si el signo es negativo (tampoco se omite nunca en este caso). A la coordenada se la suele denominar abscisa del punto, mientras que a la se la denomina ordenada del punto.

Ejes coordenados.

Existe una cierta controversia (aun hoy) sobre la verdadera paternidad de este método. Lo único cierto es que se publica por primera vez como "Geometría Analítica", apéndice al " Discurso del Método", de Descartes, si bien se sabe que Pierre de Fermat conocía y utilizaba el método antes de su publicación por Descartes. Aunque Omar Khayyam ya en el siglo XI utilizara un método muy parecido para determinar ciertas intersecciones entre curvas, es imposible que alguno de los citados matemáticos franceses tuviera acceso a su obra.

Lo novedoso de la Geometría Analítica (como también se conoce a este método) es que permite representar figuras geométricas mediante fórmulas del tipo , donde representa una función. En particular, las rectas pueden expresarse como ecuaciones polinómicas de grado 1 (v.g.: ) y las circunferencias y el resto de cónicas como ecuaciones polinómicas de grado 2 (v.g.: la circunferencia , la hipérbola ). Esto convertía toda la Geometría griega en el estudio de las relaciones que existen entre polinomios de grados 1 y 2. Desde un punto de vista formal (aunque ellos aun lo sabían), los geómetras de esta época han encontrado una relación fundamental entre la estructura lógica que usaban los geómetras griegos (el plano, la regla, el compás...) y la estructura algebraica del ideal formado por los polinomios de grados 0, 1 y 2 del Anillo de polinomios , resultando que ambas estructuras son equivalentes. Este hecho fundamental (no visto con nitidez hasta el desarrollo del Álgebra Moderna y de la Lógica Matemática entre finales del siglo XIX y principios del siglo XX) resulta fundamental para entender por qué la Geometría de los griegos puede desprenderse de sus axiomas y estudiarse directamente usando la axiomática de Zermelo-Fraenkel, como el resto de la Matemática.

El método original de Descartes no es exactamente el que se acaba de explicar. Descartes utiliza solamente el eje de abscisas, calculando el valor de la segunda componente del punto mediante la ecuación de la curva, dándole valores a la magnitud . Por otro lado, Descartes sólo considera valores positivos de las cantidades e , dado que en la época aun resultaban "sospechosos" los números negativos. Como consecuencia, en sus estudios existen ciertas anomalías y aparecen curvas sesgadas. Con el tiempo se aceptaron las modificaciones que muestran el método tal y como lo conocemos hoy en día.

Los nuevos métodos

Agotamiento del método sintético

La aparición de la Geometría Analítica trae consigo una nueva forma de entender la Geometría. El nuevo método, algebraico, sustituye al antiguo, el sintético, consiste en establecer, unos axiomas, unas definiciones y deducir de ellos los teoremas. El método sintético está a estas alturas casi agotado (aunque aun dará algunos resultados interesantes, como la característica de Euler, la naturaleza de estos resultados no es ya tanto geométrica como topológica, y los resultados realmente importantes que se hagan en adelante en el campo de la Geometría ya vendrán de la mano de métodos algebraicos o diferenciales), da paso al método algebraico: estudio de los objetos geométricos como representaciones en el espacio de ciertas ecuaciones polinómicas, o dicho de otro modo, del conjunto de raíces de polinomios. El método sintético sólo volverá a abordarse cuando aparezcan las geometrías no euclídeas, y definitivamente deja de ser un instrumento de investigación geométrica a principios del siglo XX, quedando relegado a un conjunto de instrumentos y herramientas para la resolución de problemas, pero ya como una disciplina cerrada.

Los límites del método algebraico

El método algebraico se ve posibilitado por un avance en Álgebra hecho durante el siglo XVI, la resolución de las ecuaciones de grado 3º y 4º. Esto permite generalizar la Geometría, al estudiar curvas que no son dadas por polinomios de segundo grado, y que no pueden construirse con regla y compás -además de las cónicas, excluyendo a la circunferencia, claro-. Pero este método, que terminará constituyendo una disciplina propia, la Geometría Algebraica, tardará aun mucho -siglo XX- en salir de unas pocas nociones iniciales, prácticamente inalteradas desde Descartes, Fermat y Newton. La razón será la imposibilidad de resolver por radicales la ecuación de quinto grado, hecho no descubierto hasta el siglo XIX, y el desarrollo de la Teoría de Anillos y del Álgebra Conmutativa.

El Cálculo Infinitesimal

El método algebraico tiene otra generalización natural, que es la de considerar una curva no solo como una ecuación polinómica, sino como una ecuación en la que el polinomio es ahora sustituido por una función cualquiera . La generalización de todo esto desde el plano (2 coordenadas) al estereoespacio (3 coordenadas) se hace de forma natural añadiendo un tercer eje perpendicular (eje z) a los dos ya considerados, y las funciones tomarán la forma .

Ya Isaac Barrow descubre gracias a la Geometría Analítica la relación entre la tangente a una curva y el área que encierra entre dos puntos y los ejes coordenados en su famosa Regla de Barrow, antes incluso de que Newton y Leibnitz dieran cada uno su exposición del Cálculo Infinitesimal. La relación entre el Análisis Matemático y la Geometría es así estrechísima desde incluso los orígenes de aquél. Las ideas geométricas no sólo fueron la base de los instrumentos iniciales del Cálculo Infinitesimal, sino que fueron en gran medida su inspiración. Por eso resulta natural que en un primer momento, Descartes, Newton o los Bernoulli no distinguieran entre los conceptos de curva y de función de una variable (o si se quiere, de curva y los ceros de una función de dos variables). Fue Euler el primero en empezar a intuir la diferencia, y el primero también en ampliar este tipo de estudios a las superficies (como función de dos variables o como el conjunto de los ceros de una función de tres variables). El trabajo de Monge continúa por esta línea.

En adelante, y hasta la aparición de Gauss, la Geometría queda supeditada a sus aplicaciones en Mecánica y otras ramas de la Física por medio de la resolución de Ecuaciones Diferenciales. Se estudia en especial la interpretación geométrica de las ecuaciones diferenciales (tanto de la solución en sí como problemas asociados a ellas, como puede ser el de las curvas ortogonales). En esta época aparece el que será el caballo de batalla de la Geometría Diferencial: el Teorema de la Función Implícita.

Fue Huygens el primero en estudiar la curvatura de una curva plana, aunque parece que fue Clairaut el que usa con maestría y fija el concepto.

La Geometría en la Edad Contemporánea

Carl Friedrich Gauss

Gauss devuelve el carácter geométrico que impregna parte del análisis matemático, fundamentalmente con dos contribuciones: el nacimiento del análisis complejo y de la geometría diferencial.

Pero no son las únicas contribuciones de éste genio al campo de la geometría. En su adolescencia se vio dividido entre dedicarse a la filología o a la matemática. A los 17 descubrió la manera de construir el polígono regular de 17 lados, y la condición necesaria y suficiente para que un polígono regular pueda construirse. Esto determinó su vocación.

En su primera demostración del teorema fundamental del álgebra (de las cinco que realizó a lo largo de su carrera) sentó las bases del análisis de variable compleja, usando la interpretación geométrica de los números complejos como vectores fijos del plano (no en este lenguaje, que será introducido mucho más tarde). Por cierto, se atribuye a Gauss la paternidad de esta idea. Primero Wessel y luego Argand se le anticiparon, pero nadie conocía los estudios de ambos. Aunque no es propiamente obra suya, pues el análisis complejo está desarrollada fundamentalmente por Cauchy, sí es el primero en abordarla seriamente, y sobre todo le da una interpretación geométrica que marcará el desarrollo de esta rama.

Pero la principal contribución de Gauss a la geometría es la creación de la geometría diferencial, retomando las ideas que sobre las relaciones entre el análisis matemático y la geometría había hasta entonces y desarrollándolas ampliamente.

Partiendo de la base de que la geometría estudia el espacio, las curvas y las superficies, establece la noción fundamental de curvatura de una superficie. Gracias a ella, y a la definición de geodésica, demuestra que si consideramos que una geodésica es una curva con menor distancia entre dos puntos sobre una superficie (es decir, si tenemos dos puntos sobre una superficie, el camino más corto entre esos dos puntos sin salirnos de la superficie es un segmento de geodésica), concepto totalmente análogo sobre la superficie al de recta en el plano, existen superficies en las que los triángulos formados por las geodésicas miden más de la medida de dos ángulos rectos, y otras en las que mide menos. Esto, esencialmente, es contradecir el V postulado de Euclides.

Estas consideraciones llevaron a Gauss a considerar la posibilidad de crear geometrías no euclídeas, pero aunque a esas alturas ya era el matemático más prestigioso de Europa, consideró que la mentalidad de la época no estaba preparada para un resultado de tal magnitud, y nunca publicó esos resultados. Sólo vieron la luz cuando Bolyai publicó su geometría no euclídea, y comprobó que la comunidad científica general aceptaba el resultado.

Así que, por un lado, Gauss fue el primero en crear una geometría no euclídea, y por otro fue el creador de la geometría diferencial y precursor de la variable compleja.

Ahiigudemás, Gauss es el primero en considerar una nueva propiedad en la geometría: la orientación.

El final de los grandes problemas de la antigüedad

La controversia sobre el V postulado

Como ya se ha adelantado, Gauss es el primero en construir una geometría (un modelo del espacio) en el que no se cumple el V postulado de Euclides, pero no publica su descubrimiento. Son Bolyai y Lobatchevsky quienes, de manera independiente y simultáneamente publican cada uno una geometría distinta en la que no se verifica tampoco el V postulado.

¿Qué quiere decir esto? Tanto Bolyai como Lobatchevsky parten de un objeto geométrico y establecen sobre él unos postulados que son idénticos a los de Euclides en Los Elementos, excepto el quinto. Pretenden originalmente razonar por reducción al absurdo: si el V postulado depende de los otros cuatro, cuando lo sustituya por aquél que dice exactamente lo contrario, he de llegar a alguna contradicción lógica. Lo sorprendente es que no se llega a contradicción ninguna, lo cual quiere decir dos cosas:

1º El V postulado es independiente de los otros cuatro, es decir, no puede deducirse de los otros cuatro, no es un teorema, y Euclides hizo bien en considerarlo como un postulado.

2º Existen modelos del espacio en los que, en contra de toda intuición, por un punto que no esté en una cierta recta no pasa una única recta paralela a la dada. Esto es tremendamente antiintuitivo, pues no podemos concebir tal cosa, no podemos imaginar (ni mucho menos dibujar) una situación así, sin reinterpretar los conceptos de recta, plano, etc. Pero desde el punto de vista lógico es perfectamente válido.

Como es de imaginar, esto supuso una fuerte crisis en la Matemática del siglo XIX, que vino a sumarse a otras controversias.

Es importante señalar que las geometrías de Bolyai y de Lobatchevsky, no depende de si se construyen usando métodos analíticos o sintéticos. Existen formas de construirlas tanto de manera sintética como analítica. El modelo es el mismo se llegue como se llegue, lo que abunda en su veracidad.

La trisección del ángulo y la duplicación del cubo

Un hecho aparentemente lejano en Álgebra dará como resultado la resolución de estos dos problemas. Galois muere a los 21 años de edad dejando un "testamento" lleno de ideas apresuradamente escritas. Entre ellas se encuentran las bases de la Teoría de Grupos y de la Teoría de Galois. Galois resolvió el problema de encontrar una fórmula para solucionar las ecuaciones de 5º grado, pero este resultado no llegó a ser publicado en (su corta) vida. Concluyó que una ecuación de grado 5 o mayor no puede ser resoluble por radicales (es decir, mediante una fórmula con un número finito de operaciones algebraicas). Su manera de abordar el problema abre una nueva vía dentro de la Matemática.

Pero la Teoría de Galois (una rama del Álgebra que trata sobre cuándo es posible resolver una ecuación polinómica estudiando el conjunto de números en los que se expresa esa ecuación) no da sólo esos frutos. También demuestra que todo lo construible con regla y compás tiene una traducción a polinomios muy concreta. Se demuestra que trisecar un ángulo o duplicar un cubo necesita de polinomios que no tienen esa forma, y por lo tanto, es imposible con la sola ayuda de la regla y el compás trisecar un ángulo cualquiera o duplicar un cubo.

La cuadratura del círculo

En 1862, Lindemann demuestra que el número es trascendente, es decir, no puede ser raíz de ningún polinomio con coeficientes enteros. Esto implica que no es un número que pueda construirse con regla y compás, y demuestra que no es posible construir con sólo estos instrumentos un cuadrado de área igual a la de un círculo dado.

Other Languages