High-Speed Downlink Packet Access

La tecnología HSDPA (High Speed Downlink Packet Access), también denominada 3.5G, 3G+ o mini 3G, es la optimización de la tecnología espectral UMTS/ WCDMA, una tecnología basada en conexiones minis, de menor velocidad a el promedio de la actual 3G, incluida en las especificaciones de 3GPP release 5 y consiste en un nuevo canal compartido en el enlace descendente (downlink) que mejora significativamente la capacidad máxima de transferencia de información pudiéndose alcanzar tasas de bajada de hasta 14 Mbps (1,8, 3,6, 7,2 y 14,4 Mbps) Aunque sin mejorar el 3G. Soporta tasas de throughput promedio cercanas a 1 Mbps.[ cita requerida] Actualmente, también está disponible la tecnología HSUPA, con velocidades de subida de hasta 5,8 Mbps, y HSPA+ con velocidades de hasta 84 Mbps de bajada y 22 Mbps en la subida.

Es la evolución de la tercera generación (3G) de tecnología móvil, llamada 3.5G, y se considera el paso previo antes de la cuarta generación (4G), la futura integración de redes. Actualmente se está desarrollando la especificación 3.9G antes del lanzamiento de 4G.

Es totalmente compatible en sentido inverso con WCDMA y aplicaciones ricas en multimedia desarrolladas para WCDMA que funcionarán con HSDPA. La mayoría de los proveedores UMTS dan soporte a HSDPA.

Tecnología

HSDPA lleva a las redes WCDMA a su máximo potencial en la prestación de servicios de banda ancha, mediante un aumento en la capacidad de datos móviles, con throughput más elevado. De la misma manera en que UMTS incrementa la eficiencia espectral en comparación con GPRS, HSDPA incrementa la eficiencia espectral en comparación con WCDMA. La eficiencia espectral y las velocidades aumentadas no sólo habilitan nuevas clases de aplicaciones, sino que además permite que la red sea utilizada simultáneamente por un número mayor de usuarios; HSDPA provee de tres a cuatro veces más capacidad que WCDMA. En cuanto a la interfaz de las aplicaciones en tiempo real tales como videoconferencia y juegos entre múltiples jugadores, actualiza a la tecnología WCDMA al acortar la latencia de la red (se prevén menos de 100  ms), brindando así mejores tiempos de respuesta.

Alcanza sus elevadas tasas de velocidad gracias al agregado de modulación de mayor orden (Modulación de Amplitud en Cuadratura 16 - 16 QAM), codificación variable de errores y redundancia incremental, así como la introducción de nuevas y potentes técnicas tales como programación rápida.WD Además, HSDPA emplea un eficiente mecanismo de programación para determinar qué usuario obtendrá recursos. Están programadas varias optimizaciones para HSDPA que aumentarán aún más las capacidades de UMTS/HSDPA, comenzando con un enlace ascendente optimizado ( HSUPA), receptores avanzados y antenas inteligentes/MIMO.

Finalmente, comparte sus canales de más de alta velocidad entre los usuarios del mismo dominio de tiempo, lo que representa el enfoque más eficiente.

High-Speed ​​Downlink Shared Channel

Para HSDPA, una nueva capa de transporte de canal de enlace descendente, High-Speed Downlink Shared Channel (HS-DSCH), se ha añadido a la red UMTS versión 5 y especificaciones posteriores. Se lleva a cabo mediante la introducción de tres nuevas capas de canales físicos: HS-SCCH, HS-DPCCH y HS-PDSCH. El canal de control de alta velocidad-compartida (HS-SCCH) informa al usuario de que los datos se enviarán sobre HS-DSCH, 2 ranuras por delante. El canal de control de enlace ascendente de alta velocidad-físico dedicado (HS-DPCCH) transporta información de acuse de recibo y el indicador de calidad del canal corriente (CQI) del usuario. Este valor es posteriormente utilizado utilizada por la estación base para el cálculo de la cantidad de datos a enviar a los dispositivos de los usuarios en la siguiente transmisión. El High Speed-Physical Downlink Shared Channel (Canal Compartido Descendente Físico de Alta Velocidad) (HS-PDSCH) es el canal al que el indicado canal de transporte HS-DSCH asigna que lleva los datos reales de los usuarios.

Petición de repetición híbrida automática (HARQ)

Los datos se transmiten junto con los bits de corrección de errores. Así se pueden corregir pequeños errores, sin retransmisión.

Si se necesita la retransmisión, el dispositivo del usuario guarda el paquete y después lo combina con el paquete retransmitido, para recuperar el paquete de libre de errores de la manera más eficiente posible. Incluso si están dañados los paquetes retransmitidos, su combinación puede producir un paquete libre de errores. El paquete retransmitido puede ser idéntico (combinación de persecución) o diferente (redundancia incremental) del de la primera transmisión (véase Hybrid automatic repeat request[1] ).

Debido a que las retransmisiones HARQ se procesan en la capa física, sus 12 ms de tiempo de ida y vuelta es mucho más bajo en comparación con las retransmisiones de capa superior.

Programación de paquetes rápida

El canal de enlace descendente HS-DSCH se comparte entre los usuarios que utilizan la programación dependiente del canal, para hacer el mejor uso de las condiciones de radio disponibles. Cada dispositivo de usuario transmite continuamente una indicación de la calidad de la señal de enlace descendente, tan frecuentemente como 500 veces por segundo. Con esta información de todos los dispositivos, la estación base decide a qué usuarios se que se enviarán los datos en los próximo marco de 2 ms y la cantidad de datos que deben ser enviados por cada usuario. Se pueden enviar más datos a los usuarios que reportan úna alta calidad de señal de enlace descendente.

Modulación y codificación adaptativa

El esquema de modulación y codificación se cambia en función de cada usuario, dependiendo de la calidad de la señal y el uso de células. El esquema inicial es el de Quadrature Phase-Shift Keying o clavisaje[2] por desplazamiento de fase en cuadratura ( QPSK), pero con buenas condiciones de propagación puede subir a 16 QAM y 64 QAM, aumentando significativamente las tasas de transferencia de datos. Con la asignación de Código 5, QPSK normalmente ofrece hasta 1.8 Mbit/s de velocidad de datos pico, mientras que 16QAM ofrece hasta 3,6 Mbit/s. Los códigos adicionales (por ejemplo, 10, 15) también pueden ser utilizados para mejorar estas velocidades de datos o ampliar el rendimiento de la capacidad de la red de manera significativa.

Dual-Cell/Dual Carrier

'Dual Celular (DC-)HSDPA, también conocido como Dual Carrier, es la evolución natural de HSPA mediante la agregación de portadoras en el enlace descendente. Las licencias UMTS se emiten a menudo como asignaciones de espectro emparejados de 10 o 15 MHz. La idea básica de la función de multiportadora es para lograr una mejor utilización de los recursos y de eficiencia del espectro, por medio de la asignación de recursos conjunta y el equilibrio de carga a través de las portadoras de enlace descendente.

Other Languages