Gluconeogénesis

Nombres en azul indican los sustratos de la vía, flechas en rojo las reacciones únicas de esta vía, flechas cortadas indican reacciones de la glucolisis, que van en contra de esta vía, flechas en negrita indican la dirección de la Gluconeogénesis.

El nombre génesis proviene del griego γένεσις (/guénesis/), ‘nacimiento, creación, origen’. Es una ruta metabólica anabólica que permite la biosíntesis de glucosa a partir de precursores no glucídicos. Incluye la utilización de varios aminoácidos, lactato, piruvato, glicerol y cualquiera de los intermediarios del ciclo de los ácidos tricarboxílicos (o ciclo de Krebs) como fuentes de carbono para la vía metabólica. Todos los aminoácidos, excepto la leucina y la lisina, pueden suministrar carbono para la síntesis de glucosa. Los Ácidos grasos de cadena par no proporcionan carbonos para la síntesis de glucosa, pues el resultado de su β-oxidación ( Acetil-CoA) no es un sustrato gluconeogénico; mientras que los ácidos grasos de cadena impar proporcionarán un esqueleto de carbonos que derivarán en Acetil-CoA y Succinil-CoA (que sí es un sustrato gluconeogénico por ser un intermediario del ciclo de Krebs). Algunos tejidos, como el cerebro, los eritrocitos, el riñón, la córnea del ojo y el músculo, cuando el individuo realiza actividad extenuante, requieren de un aporte continuo de glucosa, obteniéndola a partir del glucógeno proveniente del hígado, el cual solo puede satisfacer estas necesidades durante 10 a 18 horas como máximo, lo que tarda en agotarse el glucógeno almacenado en el hígado. Posteriormente comienza la formación de glucosa a partir de sustratos diferentes al glucógeno.

La gluconeogénesis tiene lugar casi exclusivamente en el hígado (10% en los riñones). Es un proceso clave pues permite a los organismos superiores obtener glucosa en estados metabólicos como el ayuno.

Reacciones de la gluconeogénesis

Las enzimas que participan en la vía glucolítica participan también en la gluconeogénesis; ambas rutas se diferencian por tres reacciones irreversibles que utilizan enzimas específicas de este proceso y los dos rodeos metabólicos de esta vía.

Estas reacciones son:

  1. De glucosa a glucosa-6-fosfato.
  2. De fructosa-6-fosfato a fructosa-1,6-bisfosfato.
  3. De fosfoenolpiruvato a piruvato.
Esquema completo de la gluconeogénesis

Conversión del piruvato en fosfoenolpiruvato

El oxaloacetato es intermediario en la producción del fosfoenolpiruvato en la gluconeogénesis. La conversión de piruvato a fosfoenolpiruvato en la gluconeogénesis se lleva a cabo en dos pasos. El primero de ellos es la reacción de piruvato y dióxido de carbono para dar oxaloacetato. Este paso requiere energía, la cual queda disponible por hidrólisis de ATP.

La enzima que cataliza esta reacción es la piruvato carboxilasa, una enzima alostérica que se encuentra en la mitocondria. El acetil-CoA es un efector alostérico que activa la piruvato carboxilasa. Cuando hay más acetil-CoA del necesario para mantener el ciclo del ácido cítrico, el piruvato se dirige a la gluconeogénesis. El ion magnesio y la biotina son necesarios para una catálisis eficaz.

La biotina, enlazada covalentemente con la enzima, reacciona con el CO2, que se une de manera covalente. Después el CO2 se incorpora al piruvato, formando así oxaloacetato.

La conversión de oxaloacetato a fosfoenolpiruvato la cataliza la enzima fosfoenolpiruvato carboxiquinasa, que se encuentra en la mitocondria y en el citosol. Esta reacción también incluye la hidrólisis de un nucleósido-trifosfato, en este caso el GTP en vez del ATP.

Conversión de la fructosa-1,6-bisfosfato en fructosa-6-fosfato

La reacción de la fosfofructoquinasa 1 de la glucólisis es esencialmente irreversible pero sólo debido a que está impulsada por la transferencia de fosfato del ATP. La reacción que tiene lugar en la gluconeogénesis para evitar este paso consiste en una simple reacción hidrolítica, catalizada por la fructosa-1,6-bisfosfatasa.

La enzima con múltiples subunidades requiere la presencia de Mg2+ para su actividad y constituye uno de los principales lugares de control que regulan la ruta global de la gluconeogénesis. La fructosa-6-fosfato formada en esta reacción experimenta posteriormente la isomerización a glucosa-6-fosfato por la acción de la fosfoglucoisomerasa.

Conversión de la glucosa-6-fosfato en glucosa

La glucosa-6-fosfato no puede convertirse en glucosa por la acción inversa de la hexoquinasa o la glucoquinasa; la trasferencia de fosfato desde el ATP hace a la reacción virtualmente irreversible. Otra enzima específica de la gluconeogénesis, la glucosa-6-fosfatasa, que también requiere Mg2+, es la que entra en acción en su lugar. Esta reacción de derivación se produce también mediante una simple hidrólisis.

La glucosa-6-fosfatasa se encuentra fundamentalmente en el retículo endoplásmico del hígado con su lugar activo en la cara luminal (del RE). La importancia de su localización en el hígado es que una función característica del hígado es sintetizar glucosa para exportarla a los tejidos a través de la circulación sanguínea.

Other Languages
български: Глюконеогенеза
bosanski: Glukoneogeneza
čeština: Glukoneogeneze
français: Néoglucogenèse
hrvatski: Glukoneogeneza
Bahasa Indonesia: Glukoneogenesis
italiano: Gluconeogenesi
日本語: 糖新生
lietuvių: Gliukoneogenezė
македонски: Глуконеогенеза
Bahasa Melayu: Glukoneogenesis
Nederlands: Gluconeogenese
norsk bokmål: Glukoneogenese
português: Gliconeogênese
srpskohrvatski / српскохрватски: Glukoneogeneza
српски / srpski: Glukoneogeneza
svenska: Glukoneogenes
Türkçe: Glukoneogenez
українська: Глюконеогенез
中文: 糖异生