Fundamentos de la matemática

Los Fundamentos de la matemática es el estudio de conceptos matemáticos básicos como números, figuras geométricas, conjuntos, funciones, etc. y cómo forman jerarquías de estructuras y conceptos más complejos, especialmente las estructuras fundamentalmente importantes que forman el lenguaje de la matemática: fórmulas, teorías y sus modelos, dando un significado a las fórmulas, definiciones, pruebas, algoritmos, etc. también llamados conceptos metamatemáticos, con atención a los aspectos filosóficos y la unidad de la matemática. La búsqueda por los fundamentos de la matemática es una pregunta central de la filosofía de las matemáticas; la naturaleza abstracta de los objetos matemáticos presenta desafíos filosóficos especiales.

Los fundamentos de la matemática como un todo no apuntan a contener los fundamentos de cada tópico matemático. Generalmente, los fundamentos de un campo de estudio, se refieren a un análisis más o menos sistemático de sus conceptos más básicos, su unidad conceptual y su ordenamiento natural o jerarquía de conceptos, los cuales podrían ayudar a conectarlos con el resto del conocimiento humano. El desarrollo, surgimiento y aclaración de los fundamentos puede aparecer tarde en la historia de un campo, y podría no ser visto por algunos como su parte más interesante.

Las matemáticas siempre jugaron un rol especial en el pensamiento científico, sirviendo desde tiempos antiguos como modelo de verdad y rigor para la inquisición racional, dando herramientas o incluso fundamentos para otras ciencias (especialmente la física). Pero la matemática ya hacía abstracciones muy elevadas en el siglo XIX, que trajeron paradojas y nuevos desafíos, exigiendo un examen más profundo y sistemático de la naturaleza y del criterio de la verdad matemática, así como también una unificación de las diversas ramas de la matemática en un todo coherente.

La búsqueda sistemática de los fundamentos de la matemática empezó al fin del siglo XIX, y formó una disciplina matemática nueva llamada lógica matemática, con fuertes vínculos con la ciencia de la computación teórica. Fue mediante una serie de crisis con resultados paradójicos, que los descubrimientos se estabilizaron durante el siglo XX con un amplio y coherente cuerpo de conocimiento matemático con muchísimos aspectos o componentes ( teoría de conjuntos, teoría de modelos, teoría de pruebas...), cuyas detalladas propiedades y posibles variantes aún están en campo de investigación. Su alto nivel de sofisticación técnica inspiró a muchos filósofos a conjeturar que podrían servir como modelo para los fundamentos de otras ciencias.

Crisis de los fundamentos

La crisis fundacional de la matemática (llamada originalmente en alemán: Grundlagenkrise der Mathematik) fue un término acuñado a principios del siglo XX para referirse a la situación teórica que llevó a una investigación sistemática y profunda de los fundamentos, que acabó inaugurando una nueva rama de la matemática.

Numerosas escuelas filosóficas matemáticas incurrieron en dificultades una tras otra, a medida que la asunción de que los fundamentos de la matemática podían ser justificados de manera consistentes dentro de la propia matemática fue puesta en duda por el descubrimiento de varias paradojas (entre ellas la célebre paradoja de Russell).

El término " paradoja" no debe ser confundido con el término contradicción. Una contradicción dentro de una teoría formal es una demostración formal de la existencia de un absurdo como resultado de un conjunto de asunciones inapropiadas (tales como 2 + 2 = 5), un conjunto de axiomas o teoría que da lugar a una contradicción se clasifica de inconsistente y debe ser rechazada como teoría útil (ya que en ella cualquier proposición acabaría siendo demostrable). Sin embargo, una paradoja puede referirse o bien a un resultado contraintuitivo pero verdadero, o a un argumento informal que lleva a una contradicción, así que una teoría candidata donde se atente la formalización de un argumento debe inhabilitar al menos uno de sus pasos; en este caso el problema es encontrar una teoría satisfactoria sin contradicciones. Ambos significados pueden aplicar si la versión formalizada del argumento forma la prueba de una verdad sorprendente. Por ejemplo, la paradoja de Russell puede ser expresada como "no hay un conjunto que contenga a todos los conjuntos" (exceptuando algunas teorías axiomáticas marginales).

Algunas escuelas de pensamiento al buscar acercarse al enfoque correcto a los fundamentos de la matemática se oponían ferozmente entre si. La escuela liderante era la escuela de enfoque formalista, de la cual, David Hilbert era el proponente principal, culminando con lo que se conoce como Programa de Hilbert, quien pensaba en fundamentar la matemática en una pequeña base de un sistema lógico sondeado en términos del finitismo metamatemático. El oponente principal era la escuela del intuicionismo, liderada por L. E. J. Brouwer, quien resueltamente descartó el formalismo como un juego futil con símbolos (van Dalen, 2008). La pelea fue acrimoniosa. En 1920 Hilbert triunfó en sacar a Brouwer, a quien él consideraba una amenaza a la matemática, removiéndolo del tablón editorial del Mathematische Annalen, la revista líder en matemáticas en aquella época.

Other Languages