Función zeta de Riemann

Función zeta de Riemann ζ(s) en el plano complejo. El color de un punto s codifica el valor de ζ(s): Colores fuertes denotan valores cercanos a 0 y el tono codifica el valor del argumento. El punto blanco en s=1 es el polo de la función zeta; los puntos negros en el eje real negativo y en la línea crítica Re(s) = 1/2 son sus ceros.

La función zeta de Riemann (a menudo denominada dseta por transliteración de la letra griega ζ), nombrada en honor a Bernhard Riemann, es una función que tiene una importancia significativa en la teoría de números, por su relación con la distribución de los números primos. También tiene aplicaciones en otras áreas tales como la física, la teoría de probabilidades y estadística aplicada.

Definición

La función zeta de Riemann ζ(s) está definida, para valores complejos con parte real mayor que uno, por la serie de Dirichlet:

En la región {sC | Re(s) > 1}, esta serie infinita converge y define una función que es analítica en esta región. Riemann observó que la función zeta puede extenderse de manera única por continuación analítica a una función meromorfa en todo el plano complejo con un único polo en s = 1. Esta es la función que se considera en la hipótesis de Riemann.

Para los complejos con Re(s)<1, los valores de la función deben ser calculados mediante su ecuación funcional, obtenida a partir de la continuación analítica de la función.

Other Languages
Ελληνικά: Συνάρτηση ζήτα
Kreyòl ayisyen: Fonksyon zeta Riemann
Bahasa Indonesia: Fungsi zeta Riemann
norsk bokmål: Riemanns zeta-funksjon
sicilianu: Zeta di Riemann
srpskohrvatski / српскохрватски: Riemannova zeta-funkcija
Simple English: Riemann zeta function