Función meromorfa

En análisis complejo, una función meromorfa sobre un subconjunto abierto D del plano complejo es una función que es holomorfa en todo D excepto en un conjunto de puntos aislados, llamados polos de la función. (La terminología viene del Griego clásico “meros”, que significa parte, en contrapunto a “holos”, que significa todo.) Dichas funciones son a veces conocidas como funciones regulares o regulares sobre D.

Toda función meromorfa sobre D puede ser expresada como el cociente entre dos funciones holomorfas (no siendo el denominador la función constante 0) definidas sobre D: los polos de la función meromorfa ocurren en los ceros del denominador.

La función gamma es meromorfa en todo el plano complejo.

Intuitivamente, una función meromorfa es un cociente de dos "buenas" funciones (holomorfas). Dicha función seguirá siendo "buena" excepto en los puntos en el que el denominador se anula, en los cuales el valor tiende a infinito.

Desde un punto de vista algebraico, si D es un espacio conexo, entonces el conjunto de funciones meromorfas es un cuerpo de fracciones del dominio de integridad del conjunto de funciones holomorfas. Esta relación es análoga a la existente entre , los racionales, y , los enteros.

Ejemplos

f(z) = (z3 − 2z + 1)/(z5 + 3z − 1)
es meromorfa en todo el plano complejo.
  • Las funciones
f(z) = exp(z)/z and f(z) = sin(z)/(z − 1)2
así como la función gamma y la función zeta de Riemann son meromorfas en todo el plano complejo.
  • La función
f(z) = exp(1/z)
está definida en todo el plano complejo exceptuando el origen, z=0. Sin embargo, el punto z=0 no es un polo de la función sino una singularidad esencial. Por tanto, esta función no es meromorfa en todo el plano complejo. Sin embargo, es meromorfa (incluso holomorfa) en C-{0}.
  • La función f(z) = ln(z) no es meromorfa en todo el plano complejo, ya que no puede ser definida de forma continua en todo el plano y ni siguiera quitando un conjunto de puntos aislados.
Other Languages