Función holomorfa

Las funciones holomorfas son el principal objeto de estudio del análisis complejo; son funciones que se definen sobre un subconjunto abierto del plano complejo C y con valores en C, que además son complejo-diferenciables en cada punto. Esta condición es mucho más fuerte que la diferenciabilidad en caso real e implica que la función es infinitamente diferenciable y que puede ser descrita mediante su serie de Taylor.

El término función analítica se usa a menudo en vez del de "función holomorfa", especialmente para cuando se trata de la restricción a los números reales de una función holomorfa. Una función que sea holomorfa sobre todo el plano complejo se dice función entera. La frase "holomorfa en un punto a" significa no sólo diferenciable en a, sino diferenciable en todo un disco abierto centrado en a, en el plano complejo.

Definición

Si U es un conjunto abierto de C (ver espacio métrico para la definición de "abierto") y es una función, se dice que f es complejo-diferenciable en el punto z0 de U si existe el siguiente límite:

Este límite se toma aquí sobre todas las sucesiones de números complejos que se aproximen a z0, y para todas esas sucesiones el cociente de diferencias tiene que dar el mismo número f '(z0).

Intuitivamente, si f es complejo-diferenciable en z0 y nos aproximamos al punto z0 desde la dirección r, entonces las imágenes se acercarán al punto f(z0) desde la dirección f '(z0) r, donde el último producto es la multiplicación de números complejos. Este concepto de diferenciabilidad comparte varias propiedades con la diferenciabilidad en caso real: es lineal y obedece a las reglas de derivación del producto, del cociente y de la cadena.

Si f es complejo-diferenciable y las derivadas son continuas en cada punto z0 en U, se dice que f es holomorfa en U. Es claro que, al igual que en el caso real, si f es holomorfa e inyectiva en U — con inversa continua — entonces es holomorfa y su derivada vale:

Other Languages