Fuerza conservativa

En un campo conservativo, el trabajo realizado para ir del punto A al punto B depende sólo de A y de B: es independiente de la trayectoria que se utilice para desplazarse entre ambos.

En física, un campo de fuerzas es conservativo si el trabajo total realizado por el campo sobre una partícula que realiza un desplazamiento en una trayectoria cerrada (como la órbita de un planeta) es nulo. El nombre conservativo se debe a que para una fuerza de ese tipo existe una forma especialmente simple (en términos de energía potencial) de la ley de conservación de la energía. Las fuerzas que dependen sólo de la posición son típicamente conservativas. Un ejemplo de fuerza conservativa es la fuerza gravitatoria de la mecánica newtoniana. Las fuerzas dependientes del tiempo o de la velocidad (por ejemplo, la fricción o rozamiento) son típicamente no conservativas. La mayoría de sistemas físicos fuera del equilibrio termodinámico son no-conservativos; en ellos la energía se disipa por procesos análogos al rozamiento.

Criterios de caracterización de una fuerza conservativa

Puede demostrarse que un campo es conservativo si presenta alguna de las propiedades siguientes (de hecho si cumple una de ellas, cumplirá las otras ya que matemáticamente son equivalentes):

  • Hay un campo escalar con:

( 1)

donde es el gradiente del campo escalar V(r).
  • El trabajo

( 2a)

a lo largo de un camino cualquiera S a través del campo de fuerza depende sólo de los puntos inicial y final y no de la trayectoria. En particular, el trabajo por una curva cerrada C es cero, también

( 2b)

( 3). Eso significa que, si la rotación desaparece, también lo hará

Conservatividad local

Cuando se considera el criterio (3) se debe tener precaución, porque el campo de fuerza puede existir, pero la rotación la hace no conservativa. El ejemplo más conocido es el conductor eléctrico, a cuyo campo magnético asociado se lo representa como:

Aunque la condición integral se cumple, no existe la derivada en el punto cero, por lo que la región no es continua. Entonces no se trata de un campo gradiente, como puede distinguir de la integral cerrada de un círculo unitario. El círculo unitario se parametriza mediante

con .

Con eso la integral cerrada es:

Es un campo no conservativo, ya que integral a lo largo de una curva cerrada como lo es una circunferencia de radio 1 centrada en el origen es diferente de cero.

Potencial

El campo escalar del criterio (1) se llama potencial o energía potencial. El signo menos de este criterio es una convención y tiene un significado profundo, a pesar que su significado fue argumentado en el principio variacional de la mecánica lagrangiana y, por el momento, opera de forma voluntaria. La base de esa convención se puede aclarar por medio del siguiente ejemplo: en la cercanía de la superficie terrestre está la masa m en un potencial gravitacional a una altura h=y bajo una aceleración de la gravedad g > 0, aproximadamente v(y)= + m g y. Debido al sistema de coordenadas en la superficie terrestre es positivo cuando se dirige hacia arriba, debe ser negativo cuando se dirige hacia abajo. Se calcula la fuerza del primer criterio y se obtiene:

Esto muestra que la fuerza se ejerce, tal como se esperaba, en dirección al centro de la Tierra.

Demostración de equivalencia de los criterios

Existen tres criterios equivalentes para determinar si un campo de fuerzas es conservativo ((1), (2) y (3)). El primer criterio es acerca de la definición de un campo de fuerzas conservativo; los otros dos son otras formulaciones del primer criterio. Muchas veces el campo de fuerzas está definido de una forma "directa" a través del segundo criterio. Así, se tiene que el trabajo en un campo conservativo es independiente del camino.

Se tiene un camino cerrado C en un campo conservativo, del punto 1 sobre el camino S1 al punto 2 luego por el camino S2 de regreso al punto 1.

Dos caminos cualquiera en un campo conservativo de fuerzas.

.

La integral cerrada sobre ese camino será:

Para todos los caminos S1, S2 esta integral sería S1 + (-S2) igual a cero, cuando:

También sería:

esto es la independencia del camino recorrido y con esto se describe las posibles definiciones de un campo conservativo.

El tercer criterio habla sobre la desaparición de la rotación de un campo de fuerzas conservativas. Por el primer criterio se tiene y para la rotación se tiene que

con lo que el primer y el tercer criterio resultan ser equivalentes. Esto también es equivalente al segundo criterio. Si , por medio del teorema de Stokes para la curva cerrada C, se tiene para una superficie cerrada A:

Con lo que el trabajo vuelve a aparecer y éste desde la primera demostración se obtuvo que era independiente del camino, por lo que se tiene finalmente una igualación de los tres criterios.

Other Languages
беларуская (тарашкевіца)‎: Кансэрватыўная сіла
Esperanto: Konserveca forto
עברית: כוח משמר
한국어: 보존력
norsk nynorsk: Konservativ kraft
Piemontèis: Fòrsa conservativa
slovenščina: Konservativna sila
српски / srpski: Konzervativna sila
Tiếng Việt: Lực bảo toàn
中文: 保守力