Formación y evolución del sistema solar

Concepción artística de un disco protoplanetario.

Se estima que la formación y evolución del sistema solar comenzó hace unos 4600 millones de años con el colapso gravitacional de una pequeña parte de una nube molecular gigante. La mayor parte de la masa colapsante se reunió en el centro, formando el Sol, mientras que el resto se aplanó en un disco protoplanetario a partir del cual se formaron los planetas, satélites, asteroides y otros cuerpos menores del sistema solar.

Este modelo ampliamente aceptado, conocido como la hipótesis nebular, fue desarrollado por primera vez en el siglo XVIII por Emanuel Swedenborg, Emanuel Kant y Pierre-Simon Laplace. Su desarrollo posterior ha entretejido una variedad de disciplinas científicas como la astronomía, la física, la geología y las ciencias planetarias. Desde los albores de la era espacial en 1950 y el descubrimiento de planetas extrasolares en la década de 1990, el modelo ha sido desafiado y refinado para incorporar las nuevas observaciones.

El sistema solar evolucionó mucho desde su formación inicial. Muchas lunas formaron discos de gas y polvo circulares alrededor de los planetas a los que pertenecen, mientras se cree que otras lunas se formaron de manera independiente y más tarde fueron capturadas por sus planetas. Todavía otras, como la Luna de la Tierra, pueden ser el resultado de colisiones gigantes. Estas colisiones entre cuerpos aún se producen y han sido fundamentales para la evolución del sistema solar. Las posiciones de los planetas se desplazaron con frecuencia. Ahora se cree que esta migración planetaria fue responsable de gran parte de la evolución temprana del sistema solar.

Formación inicial

Nebulosa solar

La hipótesis actual sobre la formación del sistema solar es la hipótesis nebular, propuesta por primera vez por Emanuel Swedenborg.[4]

En un artículo aparecido en 2009 se ha sugerido que nuestro Sol nació formando parte de un cúmulo estelar con una masa de entre 500 y 3000 masas solares y un radio de entre 1 y 3 pársecs, pensándose que aunque las estrellas que formaron dicho cúmulo se han ido dispersando con los años existe la posibilidad de que entre 10 y 60 de ésas estrellas pudieran estar en un radio de 100 parsecs alrededor del Sol.[5]

Una de estas regiones de gas colapsante (conocida como nebulosa protosolar)[8] Se creía que su composición sería más o menos la del Sol actual: aproximadamente 98% (por masa) de hidrógeno y helio presente desde el Big Bang, y 2% de elementos más pesados creados por generaciones anteriores de estrellas que murieron y los expulsaron de vuelta al espacio interestelar (ver nucleosíntesis).

Isótopos más abundantes
en el sistema solar[9]
Isótopo Núcleos por
Millón
Hidrógeno-1 705.700
Hidrógeno-2 23
Helio-4 275.200
Helio-3 35
Oxígeno-16 5.920
Carbono-12 3.032
Carbono-13 37
Neón-20 1.548
Neón-22 208
Hierro-56 1.169
Hierro-54 72
Hierro-57 28
Nitrógeno-14 1.105
Silicio-28 653
Silicio-29 34
Silicio-30 23
Magnesio-24 513
Magnesio-26 79
Magnesio-25 69
Azufre-32 396
Argón-36 77
Calcio-40 60
Aluminio-27 58
Níquel-58 49
Sodio-23 33

Tan pronto como la nebulosa colapsó, la conservación del momento angular significó que girara más rápido. Tan pronto como el material dentro de la nebulosa se condensó, los átomos en su interior comenzaron a colisionar con frecuencia creciente, causando que liberaran energía en forma de calor. El centro, donde la mayor parte de la masa se acumuló, se volvió cada vez más caliente que el disco circundante.[10]

Estudios de las estrellas T Tauri, estrellas jóvenes con masa solar prefundida, que se creían similares al Sol en este punto de su evolución, mostraron que están frecuentemente acompañadas por discos de materia preplanetaria.[12]

De esta nube y su gas y polvo (la " nebulosa solar") se piensa que se formaron varios planetas. El mecanismo actualmente aceptado por el cual los planetas se formaron es conocido como acreción, en el que los planetas comenzaron como granos de polvo en órbita alrededor de la protoestrella central, que inicialmente se formaron por el contacto directo entre grupos de entre uno y diez kilómetros de diámetro, que a su vez colisionaron para formar cuerpos más grandes ( planetesimales), de aproximadamente 5 km de tamaño, gradualmente incrementados por colisiones adicionales de 15 cm por año durante el transcurso de los siguientes pocos millones de años.[13]

El sistema solar interior era demasiado cálido para que se condensaran moléculas volátiles como las del agua y metano, así que los planetesimales que se formaron ahí fueron relativamente pequeños (abarcando sólo 0,6% de la masa del disco)[14]

Todavía más lejos, más allá de la línea de congelación donde más compuestos volátiles de hielo pudieron permanecer sólidos, Júpiter y Saturno consiguieron juntar más material que los planetas terrestres, así como esos componentes eran más comunes. Se convirtieron en gigantes gaseosos, mientras que Urano y Neptuno capturaron mucho menos material y son conocidos como gigantes de hielo porque se cree que sus núcleos están hechos principalmente de hielo (compuestos de hidrógeno).[16]

El viento solar del joven Sol esparció el gas y el polvo del disco protoplanetario, diseminándolo en el espacio interestelar, poniendo así fin al crecimiento de los planetas por acrecimiento. Las estrellas T Tauri tienen vientos solares mucho más fuertes que los de estrellas más viejas y estables.[18]

Problemas con el modelo de nebulosa solar

Uno de los problemas del modelo de nebulosa solar es aquél del momento angular. Con la gran mayoría de la masa del sistema acumulándose alrededor de una nube en rotación, la hipótesis predice que la gran mayoría del momento angular del sistema debería acumularse en ese mismo lugar. Sin embargo, la rotación del sol es mucho más lenta de lo presupuestado, y los planetas, a pesar de contar con menos del 1% de la masa total del sistema, cuentan con más del 90% de su momento angular. Una resolución a este problema es que las partículas de polvo del disco original crearon fricción, lo que disminuyó la velocidad de rotación en el centro.[19]

Planetas en el "lugar equivocado" son un problema para el sistema de la nebulosa solar. Urano y Neptuno están ubicados en una región donde su formación es muy poco plausible debido a la baja densidad de la nebulosa solar y los largos tiempos orbitales en su región. Aún más, los Júpiter caliente que ahora se observan alrededor de otras estrellas no se pueden haber formado en sus posiciones actuales si es que ellas se formaron a partir de "nebulosas solares" también. La solución a estos problemas pueden estar en las migraciones planetarias por las cuales los planetas cambian con el tiempo su distancia al Sol bien acercándose bien alejándose de éste.

Las detalladas características de los planetas son también un problema. La hipótesis de la nebulosa solar predice que todos los planetas se formarán exactamente en el plano eclíptico. En cambio, las órbitas de los planetas clásicos tienen varias (eso sí, pequeñas) inclinaciones respecto de la eclipse. Aún más, para los gigantes gaseosos se puede predecir que sus rotaciones y sistemas lunares tampoco estarán inclinados respecto del plano elíptico, teniendo Urano una inclinación de 98°. La Luna, siendo relativamente grande en comparación a la Tierra, y otras lunas que se encuentran en órbitas irregulares respecto a su planeta son otro problema. Ahora se cree que estas observaciones se explican por eventos que ocurrieron después de la formación inicial del sistema solar.

Other Languages
беларуская (тарашкевіца)‎: Паходжаньне Сонечнай сыстэмы
srpskohrvatski / српскохрватски: Formiranje Sunčevog sistema