Forma del universo

Cosmología física

Ilc 9yr moll4096.png
Radiación de fondo de microondas

Artículos
Universo primitivo Teoría del Big Bang · Inflación cósmica · Nucleosíntesis primordial
Expansión Expansión métrica del espacio · Expansión acelerada del Universo · Ley de Hubble · Corrimiento al rojo
Estructura Forma del universo · Espacio-tiempo · Universo observable · Universo · Materia oscura · Energía oscura
Experimentos Planck (satélite) · WMAP · COBE
Científicos Albert Einstein · Edwin Hubble · Georges Lemaître · Stephen Hawking · George Gamow
Portales
Principal Cosmología
Otros Física · Astronomía · Exploración espacial · Sistema Solar

La forma del universo es un nombre informal de un tema de investigación que busca determinar la morfología del universo dentro de la cosmología física, que es la ciencia encargada de estudiar el origen, la evolución y el destino del universo. Los cosmólogos y los astrónomos describen la geometría del universo incluyendo dos modalidades: la geometría local, es decir, aquella referida a la forma del universo observable, y la geometría global que trata de describir el espaciotiempo del universo completo. Su estudio está vagamente dividido en —entre otras disciplinas científicas— curvatura y topología, aunque estrictamente hablando su investigación incluya a ambos temas relacionados.

Geometría local (curvatura espacial)

La geometría local (curvatura espacial) es la que corresponde a la curvatura que describe cualquier punto arbitrario en el universo observable (hecho un promedio sobre una escala suficientemente grande). Muchas observaciones astronómicas, tales como las de una supernova y las de la radiación de fondo de microondas, muestran un universo observable bastante homogéneo e isótropo, y se deduce que su expansión se está acelerando. En la relatividad general, esto está modelado por la métrica de Friedman-Lemaître-Robertson-Walker (FLRW). Este modelo, que puede ser representado por las ecuaciones de Friedmann, proporciona una curvatura (a menudo llamada geometría) del universo basado en las matemáticas de la dinámica de los fluidos, por ejemplo modelando la materia dentro del universo como un fluido perfecto. Aunque las estrellas y grandes estructuras pueden ser llamadas como unos "casi modelo FLRW", es decir que supone homogeneidad e isotropía y que se asume que el componente espacial de la métrica puede ser dependiente del tiempo, estrictamente un modelo FLRW es usado para aproximar la geometría local del universo observable.

Otro camino para establecer la geometría local propone que, si todas las formas de energía oscura son ignoradas, entonces la curvatura del universo puede ser determinada midiendo la densidad media de la materia que está dentro de él, asumiendo que toda la materia está distribuida uniformemente (más bien que las distorsiones son causadas por objetos 'densos' como galaxias). Esta suposición es justificada por las observaciones que, cuando el universo es "débilmente" heterogéneo, está sobre el promedio homogéneo e isótropo. El universo homogéneo e isótropo da paso a una interpretación de la geometría espacial con una curvatura constante. Un aspecto de la geometría local, surgida de la aplicación de la relatividad general y el modelo de FLRW, es que el parámetro de densidad, Omega (Ω), está relacionado con la curvatura de espacio. Omega es la densidad promedio del universo dividida por la densidad de la energía crítica, es decir la requerida para que el universo sea plano (sin curvatura). La curvatura de espacio es una descripción matemática que se plantea si la hipótesis del teorema Pitagórico es realmente el válida para ser aplicada en coordenadas espaciales. En este supuesto, el teorema proporciona una fórmula alternativa para expresar relaciones locales entre distancias.

Si la curvatura es cero, entonces Ω = 1, y el teorema de Pitágoras es correcto. Si por el contrario Ω > 1, habrá una curvatura positiva, y si Ω < 1, habrá una curvatura negativa; en cualquiera de estos dos casos el teorema de Pitágoras sería incorrecto (pero las discrepancias solo se pueden detectar en los triángulos cuyas longitudes de sus lados son de una escala cosmológica). Si se miden las circunferencias de los círculos de diámetros regularmente más grandes y se dividen el antiguo por el posterior, las tres geometrías nos dan el valor π para los diámetros suficientemente pequeños, pero el radio no deja de ser π para diámetros más grandes, a no ser que π = 1. Para Ω > 1 (la esfera, ver diagrama) el radio es menor que π: de hecho, un gran círculo en una esfera tiene una circunferencia solamente dos veces su diámetro. Para Ω < 1, la relación de transformación sube sobre π.

Las medidas astronómicas de la densidad de la materia-energía de los intervalos del universo y del espacio-tiempo que usan acontecimientos de la supernova obligan la curvatura espacial para estar muy cerca de cero, aunque no obligan su muestra. Esto significa que las geometrías locales son generadas por la teoría de la relatividad basada en intervalos de espacio-tiempo, y se pueden aproximar a la geometría euclidiana.

Geometrías locales

Existen tres categorías para las posibles geometrías espaciales de curvatura constante, dependiendo del signo de la curvatura. Si la curvatura es exactamente cero, entonces la geometría local es plana; si es positiva, entonces la geometría es esférica, y si es negativa entonces la geometría local es hiperbólica.

La geometría local del universo se determina aproximadamente si Omega es menos que, igual a o mayor de 1. De arriba hacia abajo: un universo esférico (" riemanniano" o de curvatura positiva), un universo hiperbólico (" lobachevskiano" o de curvatura negativa) , y un universo plano o de curvatura 0.

La geometría del universo está usualmente representada en el sistema de distancia apropiada, según el cual la expansión del universo puede ser ignorada.
Las coordenadas de la distancia apropiada forman un solo marco de referencia según el cual el universo posee una geometría estática de tres dimensiones espaciales.

Asumiendo que el universo es homogéneo e isótropo, la curvatura del universo observable, o de la geometría local, está descrita en una de las tres geometrías "primitivas":

Incluso, si el universo no es exactamente plano, la curvatura espacial está lo bastante cerca de cero como para poner el radio aproximadamente en el horizonte del universo observable, o más allá.

En la geometría clásica euclidiana, el quinto postulado lleva a estas conclusiones: por un punto solo puede pasar una recta paralela (de hecho la definición típica de paralela es la de una recta que nunca se encuentra con otra). De esto también se concluye que la suma de los ángulos internos de los triángulos es siempre = 180°

En la geometría esférica es posible que sobre un punto fijo no pase ninguna paralela y la suma de los ángulos internos de los triángulos sea de más de 180° (>180°).

En la geometría hiperbólica es posible que sobre un punto pasen dos paralelas y que la suma de los ángulos interiores de los triángulos sea menor de 180° (<180°).