Fibrado vectorial

En matemáticas, un fibrado vectorial es una construcción geométrica donde a cada punto de un espacio topológico (o variedad, o variedad algebraica) unimos un espacio vectorial de una manera compatible, de modo que todos esos espacios vectoriales, "pegados juntos", formen otro espacio topológico (o variedad o variedad diferenciable).

Un ejemplo típico es el fibrado tangente de una variedad diferenciable: a cada punto de la variedad asociamos el espacio tangente de la variedad en ese punto. O considere una curva diferenciable en R, y una a cada punto de la curva la normal de la línea a la curva en ese punto; esto da el "fibrado normal" de la curva. Este artículo trata sobre todo de los fibrados vectoriales reales, con fibras finito-dimensionales. Los fibrados vectoriales complejos son importantes en muchos casos, también; son un caso especial, significando que pueden ser vistos como una estructura adicional en un fibrado real subyacente.

Definición y primeras consecuencias

Un fibrado vectorial real viene dado por los datos siguientes:

  • espacios topológicos X (el "espacio de base") y E (el "espacio total")

tales que para cada punto x en U

* πφ(x, v) = x para todos los vectores v en Rn
* la función v |-> φ(x, v) da un isomorfismo entre el espacio vectorial Rn y π-1({x}).

La vecindad abierta U junto con el homeomorfismo φ se llama una trivialización local del fibrado. La trivialización local muestra que localmente la función π asemeja la proyección de U x Rn en U.

Un fibrado vectorial se llama trivial si hay una "trivialización global", es decir si asemeja la proyección X x RnX. Cada fibrado vectorial π : EX es sobreyectivo, puesto que los espacios vectoriales no pueden ser vacíos. Cada fibra π-1({x}) es un espacio vectorial real finito-dimensional y por lo tanto tiene una dimensión dx. La función x |-> dx es localmente constante, es decir es constante en toda componente conexa de X. Si es constante global en X, llamamos esta dimensión el rango del fibrado vectorial. Un fibrado vectorial de rango 1 se llama un fibrado de línea.

Other Languages
العربية: حزمة شعاعية
Deutsch: Vektorbündel
English: Vector bundle
français: Fibré vectoriel
日本語: ベクトル束
한국어: 벡터다발
Nederlands: Vectorbundel
português: Fibrado vectorial
svenska: Vektorknippe
中文: 向量丛