Fibrado asociado

En matemáticas, la teoría de los fibrados con un grupo de estructura G (un grupo topológico) permite una operación de creación de un fibrado asociado, en el cual la fibra típica de un fibrado cambia de F1 a F2, que son ambos espacios topológicos con una acción de grupo de G.

Un ejemplo

Un caso simple es la cinta de Möbius, para la cual G es un grupo cíclico de orden 2. Podemos tomar como F cualesquiera entre: la recta real R, el intervalo [-1, 1], la recta real menos el punto 0, o el conjunto de dos puntos {-1, 1}. La acción de G en éstos (el elemento no-identidad actúa como x - > -x en cada caso) es semejante, en un sentido intuitivo. Podríamos decir más formalmente en términos de pegar dos rectángulos [-1, 1]xI y [-1, 1]xJ juntos: lo que realmente necesitamos son los datos para identificar [-1, 1] a sí mismo directamente en un extremo, y con torcedura en el otro extremo. Estos datos se pueden anotar como función de pegado, con valores en G. La construcción del fibrado asociado es precisamente la observación de que estos datos trabajan del mismo modo en {-1, 1} cuanto en [-1, 1].

Other Languages
中文: 配丛