Fórmula de Stirling

La diferencia relativa entre (ln x!) y (x ln x - x) tiende a cero al crecer x.

En matemáticas, la fórmula de Stirling es una aproximación para factoriales grandes. Lleva el nombre en honor al matemático escocés del siglo XVIII James Stirling.

La aproximación se expresa como

para n suficientemente grande, donde ln es el logaritmo natural.

Definición formal

La fórmula de Stirling está dada por:

que se reescribe frecuentemente como:

más exactamente la fórmula es como sigue:

donde el último término del producto(la exponencial) tiende a 1 cuando n tiende a infinito.

La lista de los numeradores es: 1, -1, 1, -1, 1, -691, 1, -3617, 43867, -174611, ...

La lista de los denominadores es: 12, 360, 1260, 1680, 1188, 360360, 156, 122400, 244188, 125400, ...

Desarrollando este último término también se puede reescribir la fórmula como:

Una acotación de la fórmula es:

Por ejemplo:

Other Languages