Física estadística

La temperatura de un gas monoatómico es una medida relacionada con la energía cinética promedio de sus moléculas al moverse. De acuerdo con la física estadística clásica la energía por molécula es (siendo g el número de grados de libertad, k la constante de Boltzmann y T la temperatura absoluta.

La física estadística o mecánica estadística es una rama de la física que mediante la teoría de la probabilidad es capaz de deducir el comportamiento de los sistemas físicos macroscópicos constituidos por una cantidad estadísticamente significativa de componentes equivalentes a partir de ciertas hipótesis sobre los elementos o partículas que los conforman y sus interacciones mutuas.

Los sistemas macroscópicos son aquellos que tienen un número de partículas cercano a la constante de Avogadro, cuyo valor, de aproximadamente , es increíblemente grande, por lo que el tamaño de dichos sistemas suele ser fácilmente concebible por el ser humano, aunque el tamaño de cada partícula constituyente sea de escala atómica. Un ejemplo de un sistema macroscópico sería, por ejemplo, un vaso de agua.

La importancia del uso de las técnicas estadísticas para estudiar estos sistemas radica en que, al tratarse de sistemas tan grandes es imposible, incluso para las más avanzadas computadoras, llevar un registro del estado físico de cada partícula y predecir el comportamiento del sistema mediante las leyes de la mecánica, además del hecho de que resulta impracticable el conocer tanta información de un sistema real.

La utilidad de la física estadística consiste en ligar el comportamiento microscópico de los sistemas con su comportamiento macroscópico o colectivo, de modo que, conociendo el comportamiento de uno, pueden averiguarse detalles del comportamiento del otro. Permite describir numerosos campos de naturaleza estocástica como las reacciones nucleares; los sistemas biológicos, químicos, neurológicos, entre otros.

Ejemplos de aplicación

Empíricamente, la termodinámica ha estudiado los gases y ha establecido su comportamiento macroscópico con alto grado de acierto. Gracias a la física estadística es posible deducir las leyes termodinámicas que rigen el comportamiento macroscópico de este gas, como la ecuación de estado del gas ideal o la ley de Boyle-Mariotte, a partir de la suposición de que las partículas en el gas no están sometidas a ningún potencial y se mueven libremente con una energía cinética igual a:

colisionando entre sí y con las paredes del recipiente de forma elástica (sin fuerzas disipativas). El comportamiento colectivo del gas depende de tan sólo unas pocas variables macroscópicas (como la presión, el volumen y la temperatura). Este enfoque particular para estudiar el comportamiento de los gases se llama teoría cinética.

Para predecir el comportamiento de un gas, la mecánica exigiría calcular la trayectoria exacta de cada una de las partículas que lo componen (lo cual es un problema inabordable). La termodinámica hace algo radicalmente opuesto, establece unos principios cualitativamente diferentes a los mecánicos para estudiar una serie de propiedades macroscópicas sin preguntarse en absoluto por la naturaleza real de la materia de estudio. La mecánica estadística media entre ambas aproximaciones: ignora los comportamientos individuales de las partículas, preocupándose en vez de ello por promedios. De esta forma podemos calcular las propiedades termodinámicas de un gas a partir de nuestro conocimiento genérico de las moléculas que lo componen aplicando leyes mecánicas.

Other Languages
Bahasa Indonesia: Mekanika statistika
日本語: 統計力学
한국어: 통계역학
Bahasa Melayu: Mekanik statistik
norsk nynorsk: Statistisk mekanikk
srpskohrvatski / српскохрватски: Statistička mehanika
Simple English: Statistical mechanics
slovenščina: Statistična mehanika
Tiếng Việt: Cơ học thống kê
中文: 统计力学