Extensión de cuerpos

En Álgebra, las extensiones de cuerpo son el problema fundamental de la Teoría de Cuerpos. Un cuerpo es un conjunto en el que las operaciones suma y producto están definidas y «funcionan bien». Cuando se construye una extensión de un cuerpo, se busca un conjunto más grande en el que las operaciones suma y producto sigan funcionando bien y además se puedan resolver las ecuaciones polinómicas.

Definición.

Sea (K, +, ·) un cuerpo. Un cuerpo L es una extensión de K si K es un subcuerpo de L, es decir si (L,+,·) es un cuerpo y (K,+,·) es un cuerpo con la restricción a K de las operaciones + y · en L. Si L es extensión sobre K se denota L:K o L/K.

Extensión sobre un cuerpo como espacio vectorial sobre el cuerpo

En efecto, La adición de K sirve también de adición en el espacio vectorial, y la multiplicación de un elemento de K por uno de L define el producto escalar del espacio vectorial:

Por definición de cuerpo, es grupo abeliano, y podemos considerar el producto por escalares como una restricción a del producto en . De esta forma es inmediato que se cumple que:

  • ,
  • ,
  • ,
  • ,

cualesquiera que sean y . Las dos primeras propiedades son debidas a la distributividad del producto respecto de la suma en y a que , la tercera se debe a que el producto es asociativo en , y la cuarta se debe a que es subcuerpo de , por lo que el elemento unidad de es el elemento unidad de .

Other Languages