Evolución estelar

Representación artística del ciclo de vida de una estrella similar al Sol

En astronomía, se denomina evolución estelar a la secuencia de cambios que una estrella experimenta a lo largo de su existencia.

Durante mucho tiempo se pensó que las estrellas eran enormes bolas de fuego perpetuo. En el siglo XIX aparecen las primeras teorías científicas sobre el origen de su energía: Lord Kelvin y Helmholtz propusieron que las estrellas extraían su energía de la gravedad contrayéndose gradualmente. Pero dicho mecanismo habría permitido mantener la luminosidad del Sol durante únicamente unas decenas de millones de años, lo que no concordaba con la edad de la Tierra medida por los geólogos, que ya entonces se estimaba en varios miles de millones de años. Esa discordancia llevó a la búsqueda de una fuente de energía distinta a la gravedad; en la década de 1920 Sir Arthur Eddington propuso la energía nuclear como alternativa. Hoy en día sabemos que la vida de las estrellas está regida por esos procesos nucleares y que las fases que atraviesan desde su formación hasta su muerte dependen de las tasas de los distintos tipos de reacciones nucleares y de cómo la estrella reacciona ante los cambios que en ellas se producen al variar su temperatura y composición internas. Así pues, la evolución estelar puede describirse como una batalla entre dos fuerzas: la gravitatoria, que desde la formación de una estrella a partir de una nube de gas tiende a comprimirla y a conducirla al colapso gravitatorio, y la nuclear, que tiende a oponerse a esa contracción a través de la presión térmica resultante de las reacciones nucleares. Aunque finalmente el ganador de esta batalla es la gravedad (ya que en algún momento la estrella no tendrá más combustible nuclear que emplear), la evolución de la estrella dependerá, fundamentalmente, de su masa inicial y, en segundo lugar, de su metalicidad y su velocidad de rotación así como de la presencia de estrellas compañeras cercanas.

Una estrella de metalicidad solar, baja velocidad de rotación y sin compañeras cercanas, atraviesa las siguientes fases, conforme a su masa inicial:[2]

Rango de masas   Fases evolutivas Destino final
Masa baja: M 0,5 MSol PSP SP SubG GR EB
Masa intermedia: 0,5 MSol M 9 MSol PSP SP SubG GR AR/RH RAG NP+EB
Masa elevada: 9 MSol M 30 MSol PSP SP SGAz SGAm SGR SN+EN
Masa muy elevada: 30 MSol M PSP SP SGAz/WR VLA WR SN/BRG+AN
Trayectorias evolutivas de estrellas de distintas masas representadas en un diagrama de Hertzsprung-Russell.

Los nombres de las fases son:

Una estrella puede morir en forma de:

y dejar un remanente estelar:

Las fases y los valores límites de las masas entre los distintos tipos de posibles evoluciones dependen de la metalicidad, de la velocidad de rotación y de la presencia de compañeras. Así, por ejemplo, algunas estrellas de masa baja o intermedia con una compañera cercana, o algunas estrellas muy masivas y de baja metalicidad, pueden acabar su vida destruyéndose por completo sin dejar ningún remanente estelar.

El estudio de la evolución estelar está condicionado por sus escalas temporales, casi siempre muy superiores a la de una vida humana. Por ello no se puede analizar el ciclo de vida completo de cada estrella individualmente, sino que es necesario realizar observaciones de muchas de ellas, cada una en un punto distinto de su evolución, a modo de instantáneas de ese proceso. En este aspecto es fundamental el estudio de los cúmulos estelares, los que esencialmente son colecciones de estrellas de edad y metalicidad similares pero con un amplio rango de masas. Esos estudios luego se comparan con modelos teóricos y simulaciones numéricas de la estructura estelar.

La presecuencia principal (PSP): De la nube molecular al inicio del quemado de hidrógeno

NGC 604, una región gigante de formación estelar en la Galaxia del Triángulo

Las estrellas se forman a partir del colapso gravitatorio y condensación de inmensas nubes moleculares de gran densidad, tamaño y masa total. La metalicidad de la nube de gas será la que posean las estrellas que se formen a partir de ella. Normalmente, una misma nube produce varias estrellas formando cúmulos abiertos con decenas y hasta centenares de ellas. Estos fragmentos de gas se convertirán en discos de acreción o de acrecimiento de los cuales surgirán planetas si la metalicidad es lo suficientemente elevada.

Sea como fuere, el gas prosigue su caída hacia el centro de la nube. Este centro o núcleo de la protoestrella se comprime más deprisa que el resto liberando mayor energía potencial gravitatoria. Aproximadamente la mitad de esa energía se irradia y la otra mitad se invierte en el calentamiento de la protoestrella. De esta forma el núcleo aumenta su temperatura cada vez más hasta encender el hidrógeno, momento en el cual la presión generada por las reacciones nucleares asciende rápidamente hasta equilibrar la gravedad.

La masa de la nube determina también la masa de la estrella. No toda la masa de la nube llega a formar parte de la estrella. Gran parte de ese gas es expulsado cuando el «nuevo sol» empieza a lucir. Cuanto más masiva sea esta nueva estrella más intenso será su viento estelar llegando al punto de detener el colapso del resto del gas. Existe, por ese motivo, un límite máximo en la masa de las estrellas que se pueden formar en torno a las 120 ó 200 masas solares.[3] La metalicidad reduce ese límite, algo incierto, debido a que los elementos son más opacos al paso de la radiación cuanto más pesados. Por lo tanto una mayor opacidad hace que el gas frene su colapso más rápidamente por acción de la radiación.

La continua lucha entre la gravedad, que tiende a contraer la joven estrella, y la presión producida por el calor generado en las reacciones termonucleares de su interior, es el principal factor que determina a partir de entonces la evolución de la estrella.

Other Languages
العربية: تطور النجوم
čeština: Vývoj hvězd
eesti: Täheareng
Bahasa Indonesia: Evolusi bintang
日本語: 恒星進化論
한국어: 항성진화
македонски: Ѕвезден развој
Bahasa Melayu: Evolusi najam
Nederlands: Sterevolutie
norsk bokmål: Stjerneutvikling
português: Evolução estelar
Simple English: Stellar evolution
slovenčina: Vývoj hviezdy
српски / srpski: Zvezdana evolucija
Türkçe: Yıldız evrimi
українська: Еволюція зір
Tiếng Việt: Tiến hóa sao
中文: 恆星演化