Estadística de Fermi-Dirac

La estadística de Fermi-Dirac es la forma de contar estados de ocupación de forma estadística en un sistema de fermiones. Forma parte de la Mecánica Estadística. Y tiene aplicaciones sobre todo en la Física del estado sólido.

La energía de un sistema mecanocuántico está discretizada. Esto quiere decir que las partículas no pueden tener cualquier energía, sino que ha de ser elegida de entre un conjunto de valores discretos. Para muchas aplicaciones de la física es importante saber cuántas partículas están a un nivel dado de energía. La distribución de Fermi-Dirac nos dice cuánto vale esta cantidad en función de la temperatura y el potencial químico.

La estadística F-D fue publicada por vez primera en 1926 por Enrico Fermi[2]

Formulación matemática

La distribución de Fermi-Dirac viene dada por:

donde:

  • el número promedio de partículas en el estado de energía .
  • es la degeneración del estado i-ésimo
  • es la energía en el estado i-ésimo
  • es el potencial químico
  • es la temperatura
  • la constante de Boltzmann
Other Languages