Espacio dual

En matemáticas, la existencia de un espacio vectorial 'dual' refleja de una manera abstracta la relación entre los vectores fila (1×n) y los vectores columna (n×1) de una matriz. La construcción puede darse también para los espacios infinito-dimensionales y da lugar a modos importantes de ver las medidas, las distribuciones y el espacio de Hilbert. El uso del espacio dual es así, en una cierta manera, recurso del análisis funcional. Es también inherente a la transformación de Fourier.

El espacio dual algebraico

Dado cualquier espacio vectorial V sobre un cierto cuerpo F, definimos el espacio dual V* como el conjunto de todas las funcionales lineales en F, es decir, transformaciones lineales en V a valores escalares (en este contexto, un "escalar" es un miembro del cuerpo-base F). El propio V* se convierte en un espacio vectorial sobre F bajo la definiciones siguientes ('punto a punto') de la adición y de la multiplicación escalar

para todos φ, ψ en V*, a en F y x en V. En lenguaje del cálculo tensorial, los elementos de V a veces se llaman vectores contravariantes, y los elementos de V* vectores covariantes (y a campos de estos uno-formas).

Ejemplos

Si la dimensión de V es finita, entonces V* tiene la misma dimensión que V; si { e1,..., e n} es una base para V, entonces la base dual asociada { e¹,...,e n} de V* viene dada por:

Específicamente, si se interpreta Rn como espacio de columnas de n números reales, su espacio dual se escribe típicamente como el espacio de filas de n números. Tal fila actúa en Rn como funcional lineal por la multiplicación ordinaria de matrices. Si V consiste en el espacio de los vectores geométricos (flechas) en el plano, entonces los elementos del dual V* se pueden intuitivamente representar como colecciones de líneas paralelas. Tal colección de líneas se puede aplicar a un vector para dar un número de la manera siguiente: se cuenta cuántas de las líneas cruzan el vector.

Si V es infinito-dimensional, entonces la construcción antedicha ej no produce una base para V* y la dimensión de V* es mayor que la de V. Considérese por ejemplo el espacio R (ω), cuyos elementos son las secuencias de números reales que tienen solo una cantidad finita de entradas diferentes de cero. El dual de este espacio es Rω, el espacio de todas las secuencias de números reales. Tal secuencia (an) se aplica a un elemento (xn) de R(ω) para dar Σn xnan.

Transpuesta de una transformación lineal

Si f: V -> W es una función lineal, se puede definir su transpuesta por

para cada en W*, la asignación genera un homomorfismo inyectivo entre el espacio de operadores lineales de V a W y el espacio de operadores lineales de W* a V*; este homomorfismo es un isomorfismo ssi W es finito-dimensional o V es trivial. Si la función lineal f es representada por la matriz A con respecto a dos bases de V y W, entonces tf es representada por la matriz transpuesta tA con respecto a las bases duales de W* y de V*. Si g: W → X es otra función lineal, se tiene t(g o f) = tf o t g. En el lenguaje de la teoría de las categorías, tomar el dual de los espacios vectoriales y la transpuesta de funciones lineales es por lo tanto un funtor contravariante de la categoría de los espacios vectoriales sobre F a sí misma.

Los productos bilineales y los espacios duales

Como vimos arriba, si V es finito-dimensional, entonces V es isomorfo a V*, solamente que el isomorfismo no es natural y depende de la base de V con que comenzamos. De hecho, cualquier isomorfismo Φ de V a V* define un producto bilineal no degenerado único en V por

y cada producto bilineal no degenerado en un espacio finito-dimensional da lugar inversamente a un isomorfismo de V a V*.

Inyección en el doble-dual

Hay un homomorfismo natural Ψ de V en el doble dual V**, definido por (Ψ(v))(f) = f(v) para todo v en V, f en V*. Esta función Ψ es siempre inyectiva; es un isomorfismo si y solamente si V es finito-dimensional.

Other Languages
čeština: Duální prostor
Deutsch: Dualraum
English: Dual space
français: Espace dual
hrvatski: Dualni prostor
magyar: Duális tér
italiano: Spazio duale
한국어: 쌍대공간
Nederlands: Duale ruimte
Piemontèis: Spassi doal
português: Espaço dual
srpskohrvatski / српскохрватски: Dualni prostor
slovenčina: Duálny priestor
српски / srpski: Дуални простор
svenska: Dualrum
українська: Спряжений простір
中文: 对偶空间