Emmy Noether

Emmy Noether
Noether.jpg
Amalie Emmy Noether
Nacimiento 23 de marzo de 1882
Erlangen, Baviera, Alemania
Fallecimiento 14 de abril de 1935 (53 años)
Bryn Mawr, Pensilvania, Estados Unidos
Nacionalidad Alemana (1882-1933)
Estadounidense (1933-35)
Campo Matemáticas y física
Instituciones Universidad de Gotinga
Bryn Mawr College
Alma máter Universidad de Erlangen-Núremberg
Supervisor doctoral Paul Gordan
Estudiantes
destacados
Max Deuring
Hans Fitting
Grete Hermann
Zeng Jiongzhi
Hans Reichenbach
Conocida por Álgebra abstracta, física teórica
[ editar datos en Wikidata]

Emmy Noether (pronunciado en alemán [ˈnøːtɐ], Erlangen, Baviera, Alemania, 23 de marzo de 1882- Bryn Mawr, Pensilvania, Estados Unidos, 14 de abril de 1935) fue una matemática, judía, alemana de nacimiento, conocida por sus contribuciones de fundamental importancia en los campos de la física teórica y el álgebra abstracta. Considerada por David Hilbert, Albert Einstein y otros personajes como la mujer más importante en la historia de la matemática,[3]

Nació en una familia judía en la ciudad bávara de Erlangen; su padre era el matemático Max Noether. Emmy originalmente pensó en enseñar francés e inglés tras aprobar los exámenes requeridos para ello, pero en su lugar estudió matemáticas en la Universidad de Erlangen-Núremberg, donde su padre impartía clases. Tras defender su tesis bajo la supervisión de Paul Gordan, trabajó en el Instituto Matemático de Erlangen sin percibir retribuciones durante siete años. En 1915 fue invitada por David Hilbert y Felix Klein a entrar en el departamento de matemáticas de la Universidad de Gotinga, que en ese momento era un centro de investigación matemática de fama mundial. La facultad de filosofía, sin embargo, puso objeciones a su puesto y por ello se pasó cuatro años dando clases en nombre de Hilbert. Su habilitación recibió la aprobación en 1919, permitiéndole obtener el rango de Privatdozent.

Noether continuó siendo uno de los miembros más importantes del departamento de matemáticas de Gotinga hasta 1933; sus alumnos a veces eran conocidos como "los chicos de Noether". En 1924 el matemático holandés B. L. van der Waerden se unió a su círculo y pronto comenzó a ser el principal expositor de las ideas de Noether: su trabajo fue el fundamento del segundo volumen de su influyente libro de texto, publicado en 1931, Moderne Algebra. Cuando pronunció su alocución en la sesión plenaria de 1932 del Congreso Internacional de Matemáticos en Zúrich, su acervo algebraico ya era reconocido mundialmente. En los siguientes años, el gobierno nazi de Alemania expulsó a los judíos que ocupaban puestos en las universidades, y Noether tuvo que emigrar a Estados Unidos para ocupar una plaza en el Bryn Mawr College de Pensilvania. En 1935 sufrió una operación de quiste ovárico y, a pesar de los signos de recuperación, falleció cuatro días después a la edad de 53 años.

El trabajo de Noether en matemáticas se divide en tres épocas:[6] En su artículo clásico Idealtheorie in Ringbereichen (La teoría de ideales en los anillos, 1921) Noether transformó la teoría de ideales en los anillos conmutativos en una poderosa herramienta matemática con aplicaciones muy variadas. Efectuó un uso elegante de la condición de la cadena ascendente, y los objetos que la satisfacen se denominan noetherianos en su honor. En la tercera época (1927-1935), publicó sus principales obras sobre álgebras no conmutativas y números hipercomplejos y unió la teoría de la representación de los grupos con la teoría de módulos e ideales. Además de sus propias publicaciones, Noether fue generosa con sus ideas y se le atribuye el origen de varias líneas de investigación publicadas por otros matemáticos, incluso en campos muy distantes de su trabajo principal, como la topología algebraica.

Biografía

Noether se crio en la ciudad bávara de Erlangen, representada en esta imagen de una postal de 1916.

El padre de Emmy, Max Noether, era descendiente de una familia de comerciantes al por mayor de Alemania. Quedó paralítico a causa de la poliomielitis a la edad de catorce años. Recuperó parte de la movilidad, pero una de sus piernas quedó afectada. En gran medida autodidacta, obtuvo el doctorado de la Universidad de Heidelberg en 1868. Tras desempeñar su labor docente durante siete años, obtuvo un puesto en la ciudad bávara de Erlangen, donde conoció y posteriormente desposó a Ida Amalia Kaufmann, la hija de un próspero mercader.[7] Las contribuciones a la matemática de Max Noether pertenecen principalmente al campo de la geometría algebraica, siguiendo los pasos de Alfred Clebsch. Su trabajo más conocido es el Teorema de Brill-Noether y el residuo, o teorema AF+BG. También es autor de otros teoremas, entre los que destaca el teorema de Max Noether.

Emmy Noether nació en el seno de esa familia un 23 de marzo de 1882, siendo la primogénita de los cuatro hermanos. Su primer nombre era Amalie, por su padre y abuela materna, pero comenzó a usar su segundo nombre al convertirse en una jovencita. Emmy era corta de vista y hablaba con un leve sigmatismo durante su infancia. Un amigo de la familia contó una anécdota años más tarde sobre la joven Emmy, en la que resolvió con rapidez un acertijo en una fiesta infantil, apuntando ya su capacidad para la lógica a temprana edad.[9]

De sus tres hermanos, sólo Fritz Noether, nacido en 1884, es recordado por sus logros académicos. Tras estudiar en Múnich se creó una reputación en el campo de la matemática aplicada. Su hermano mayor, Alfred, nació en 1883, obtuvo un doctorado en química por la Universidad de Erlangen-Núremberg en 1909, pero murió nueve años después. El menor de sus hermanos, Gustav Robert, nació en 1889. Se sabe muy poco sobre su vida. Sufrió una enfermedad crónica y falleció en 1928.[10]

En la Universidad de Erlangen-Núremberg

El Kollegienhaus de Erlangen, uno de los edificios de la antigua universidad donde se graduó y dio sus primeras lecciones Emmy Noether.

Emmy Noether mostró a temprana edad su capacidad para la lengua inglesa y francesa. En la primavera de 1900 se presentó al examen de profesor de esas lenguas y recibió una calificación global de sehr gut (sobresaliente). Su capacitación le cualificaba para enseñar idiomas en escuelas femeninas, pero en lugar de ello decidió continuar sus estudios en la Universidad de Erlangen-Núremberg.

Esta decisión era muy poco convencional en su época. Dos años antes, el senado académico de la universidad había declarado que la coeducación podría "subvertir todo el orden académico".[12]

Durante el semestre de invierno 1903-04 estudió en la Universidad de Gotinga, asistiendo a lecciones impartidas por el astrónomo Karl Schwarzschild y los matemáticos Hermann Minkowski, Otto Blumenthal, Felix Klein, y David Hilbert. Muy poco después, las distinciones en los derechos de las mujeres que pendían en esa universidad fueron rescindidos.

Noether regresó a Erlangen. Oficialmente se reincorporó a la universidad el 24 de octubre de 1904 y declaró su intención de centrarse exclusivamente en las matemáticas. Bajo la supervisión de Paul Gordan escribió su tesis Über die Bildung des Formensystems der ternären biquadratischen Form (Sobre la construcción de los sistemas formales de las formas ternarias bicuadráticas, 1907). Aunque fue bien acogida, Noether describió posteriormente su tesis como bazofia.[13]

Durante los siguientes siete años (1908-1915) impartió clases en el Instituto matemático de la Universidad de Erlangen sin percibir emolumentos, sustituyendo ocasionalmente a su padre cuando se encontraba demasiado postrado para dar clase. En 1910 y 1911 publicó una ampliación de su tesis doctoral generalizando el caso de 3 variables a n variables.

Noether en ocasiones empleaba postales para discutir temas de álgebra abstracta con su colega, Ernst Fischer. Esta postal tiene matasellos del 10 de abril de 1915.

Gordan se jubiló en la primavera de 1910, pero continuó enseñando ocasionalmente con su sucesor, Erhard Schmidt, quien poco después se fue para ocupar una plaza en Breslau. Gordan abandonó la enseñanza en 1911 con la llegada de su segundo sucesor, Ernst Fischer. Gordan falleció en diciembre de 1912.

Según Hermann Weyl, Fischer ejerció una importante influencia en Noether, en particular por introducirle a la obra de David Hilbert. De 1913 a 1916 Noether publicó varios artículos ampliando y aplicando la metodología de Hilbert a objetos matemáticos como los cuerpos de funciones racionales y la teoría de los invariantes de grupos finitos. Esta fase marca el comienzo de su compromiso con el álgebra abstracta, el campo de las matemáticas en el que efectuó contribuciones fundamentales.

Noether y Fischer compartieron con entusiasmo su placer por las matemáticas y con frecuencia discutirían sus clases mucho después de que su relación hubiera terminado. Se sabe que Noether envió postales a Fischer continuando su intercambio de impresiones sobre pensamientos matemáticos.[14]

En la Universidad de Gotinga

En la primavera de 1915, Noether fue invitada a regresar a la Universidad de Gotinga por David Hilbert y Felix Klein. No obstante, sus esfuerzos por reclutarla fueron bloqueados por los filólogos e historiadores de la Facultad de Filosofía, bajo el argumento, según ellos, de que las mujeres no debían acceder a la condición de privatdozent. Uno de los miembros de la facultad protestó diciendo "¿qué pensarán nuestros soldados cuando vuelvan a la universidad y encuentren que se les pide que aprendan poniéndose a los pies de una mujer?"[15]

Noether se dirigió a Gotinga a finales de abril. Dos semanas más tarde a su madre le sobrevino repentinamente la muerte. Previamente había recibido un tratamiento por una afección ocular, pero se desconoce su naturaleza y el impacto que sobre ella tuvo la desaparición de su madre. Por esas fechas el padre de Emmy se jubiló y su hermano se alistó en el ejército de Alemania para combatir en la Primera Guerra Mundial. Regresó a Erlangen durante algunas semanas, principalmente para ocuparse de su anciano padre.[16]

Durante los primeros años como profesora en Gotinga no tuvo una plaza oficial y no percibía retribución. Su familia le pagaba el alojamiento y manutención, sufragando de ese modo su labor académica. Frecuentemente sus clases se anunciaban con el nombre de Hilbert y tenía la consideración de "ayudante".

No obstante, poco después de llegar a Gotinga mostró su capacidad probando el teorema que hoy en día lleva su nombre, que muestra que toda ley de conservación en un sistema físico proviene de alguna simetría diferenciable del mismo.[5]

El departamento de matemáticas de la Universidad de Gotinga permitió la habilitación de Noether en 1919, cuatro años después de que hubiera comenzado a dar clases en su facultad.

Cuando finalizó la primera guerra mundial, la Revolución de Noviembre trajo un cambio significativo en los usos sociales, lo que se tradujo en más derechos para las mujeres. En 1919 la Universidad de Gotinga permitió a Noether optar a su habilitación (capacidad de ejercer como profesora). Su examen oral tuvo lugar a finales de mayo, y su lección de habilitación fue pronunciada con éxito en junio.

Tres años después recibió una carta del Ministerio prusiano de Ciencia, Arte y Educación Pública en el que se le confería el título de nicht beamteter ausserordentlicher Professorin (Profesora no funcionaria externa, es decir, con derechos y funciones administrativas limitadas).[19]

Trabajos determinantes para el álgebra abstracta

Aunque el teorema de Noether tiene un profundo efecto sobre la física, entre los matemáticos es célebre por ser uno de los que iniciaron el campo del álgebra abstracta. Como dice Nathan Jacobson en su introducción a los Collected Papers (Artículos reunidos) de Noether:

El desarrollo del álgebra abstracta, que es una de las más importantes innovaciones de las matemáticas del siglo XX, se debe en gran medida a ella - por sus publicaciones, clases e influencia personal sobre sus contemporáneos.

La obra fundamental para el álgebra de Noether comenzó en 1920. Cuando pudo contar con la colaboración de W. Schmeidler publicó un artículo sobre la teoría de ideales en la que definía los ideales por la izquierda y por la derecha en un anillo. Los años siguientes publicó un artículo que se convirtió en un hito, titulado Idealtheorie in Ringbereichen, analizando la condición de la cadena ascendente al respecto de los ideales. Un notable algebrista, Irving Kaplansky, calificó su trabajo de "revolucionario",[21]

En 1924, un joven matemático holandés, B. L. van der Waerden, llegó a la Universidad de Gotinga. Inmediatamente comenzó a trabajar con Noether, quien le proporcionó métodos de incalculable valor en la conceptualización abstracta. Van der Waerden dijo posteriormente que su originalidad estaba "absolutamente más allá de cualquier comparación".[24]

Las visitas de Van der Waerden eran parte de una convergencia de los matemáticos de todo el mundo hacia Gotinga, que se convirtió en el centro más importante de contacto entre la investigación en física y matemáticas. De 1926 a 1930 el topólogo ruso Pavel Alexandrov dio una clase en la universidad. Noether y él rápidamente se convirtieron en buenos amigos. Comenzó a referirse a ella como der Noether (el Noether), utilizando el artículo nominativo masculino singular alemán como apelativo cariñoso para mostrar su respeto hacia ella. Ella intentó buscar la manera de obtener un puesto para él en Gotinga como profesor regular, pero sólo fue capaz de ayudarle a asegurarse una beca de la Fundación Rockefeller.[26]

Docencia y alumnado

En Gotinga, Noether supervisó más de una docena de doctorandos. El primero fue Grete Hermann, quien defendió su tesis en febrero de 1925. Posteriormente habló reverentemente de su "madrina de tesis".[28]

Además de su instinto para las matemáticas, Noether fue respetada por su consideración hacia los demás. Aunque algunas veces se comportó duramente contra los que le contradecían, se ganó reputación por su solicitud y paciencia con los alumnos nuevos. Su lealtad a la precisión matemática hizo que un colega la calificara como una "crítica severa", pero combinó su exigencia de precisión con una actitud casi maternal.[30]

Su estilo de vida frugal se debía a que se le negaron los emolumentos por su trabajo. No obstante, a pesar de que la universidad comenzó a retribuirle con un pequeño salario en 1923, continuó viviendo de forma modesta. Se le retribuyó de forma más generosa al final de su vida, pero ahorraba la mitad de su salario para ayudar a su sobrino, Gottfried E. Noether.[31]

Mayormente despreocupada por su aspecto y modales, se centró exclusivamente en sus estudios hasta el punto de excluir la posibilidad de una relación romántica o de seguir la moda. Una importante algebrista, Olga Taussky-Todd, describió un refrigerio para mujeres, en el que Noether, totalmente metida en una discusión matemática, "escupía su comida constantemente y se limpiaba en su vestido, sin que esto le afectase lo más mínimo".[33]

De acuerdo con el obituario pronunciado por van der Waerden tras la muerte de Emmy Noether, ella no seguía un programa preestablecido en sus clases, lo cual frustraba a algunos alumnos. Sus clases eran un tiempo de discusión espontánea con sus alumnos, para pensar y clarificar los problemas más avanzados del momento en matemáticas. Algunos de los resultados más importantes se desarrollaron en estas clases, y los apuntes de los estudiantes acabaron formando la base de varios textos importantes, como los de van der Waerden y Deuring.

Varios de sus colegas asistían a sus clases, y ella permitía que algunas de sus ideas, como la del "producto cruzado" (verschränktes Produkt en alemán) de álgebras asociativas fueran publicadas por otros. Existe un registro en el que figura Noether como profesora de cursos que duraron al menos cinco semestres en Gotinga:[34]

  • Invierno de 1924/25: Gruppentheorie und hyperkomplexe Zahlen (Teoría de grupo y números hipercomplejos)
  • Invierno de 1927/28: Hyperkomplexe Grössen und Darstellungstheorie (Cantidades hipercomplejas y teoría de la representación)
  • Verano de 1928: Nichtkommutative Algebra (Álgebra no conmutativa)
  • Verano de 1929: Nichtkommutative Arithmetik (Aritmética no conmutativa)
  • Invierno de 1929/30: Algebra der hyperkomplexen Grössen (Álgebra de cantidades hipercomplejas)

Estos cursos con frecuencia precedían a publicaciones importantes en estas áreas. Noether hablaba muy rápido —reflejando la rapidez de sus pensamientos, según decían muchos— y pedía gran concentración a sus alumnos. Aquellos a los que les desagradaba su estilo, se sentían a menudo alienados. Uno de ellos escribió en un cuaderno con respecto a una clase que terminó a la 1:00 pm: "Son las 12:50, ¡gracias a Dios!"[35] Algunos alumnos pensaban que se basaba demasiado en discusiones espontáneas. Sin embargo, sus alumnos más aplicados se solazaban en el entusiasmo con que transmitía las matemáticas, especialmente porque sus clases con frecuencia se hacían sobre los trabajos más recientes que habían elaborado juntos.

Desarrolló un círculo cerrado de colegas y estudiantes que pensaban de forma similar y tendían a excluir a quienes no lo hacían así. Los " outsiders" que ocasionalmente visitaban las clases de Noether solían pasar sólo 30 minutos en el aula antes de abandonarla envueltos en la frustración o la confusión. Uno de sus estudiantes habituales anotó así uno de estos incidentes: "El enemigo ha sido derrotado; se ha ido."[36]

La devoción de Noether por su profesión y sus alumnos no entendía de horas lectivas. Una vez que el edificio de la universidad estaba cerrado por vacaciones, reunió a su clase en las escaleras de la entrada, la llevó por el bosque y les dio clase en una cafetería local.[38]

En Moscú

Noether enseñó en la Universidad Estatal de Moscú en el invierno de 1928-29.

En el invierno de 1928-29 Noether aceptó una invitación de la Universidad Estatal de Moscú, donde continuó trabajando con P. S. Alexandrov. Además de continuar con sus investigaciones, impartió clases de álgebra abstracta y geometría algebraica. Trabajó con los topólogos Lev Pontryagin y Nikolai Chebotaryov, quienes más tarde agradecieron su contribución al desarrollo de la teoría de Galois.[39]

Aunque la política no fue central en su vida, Noether se tomó cierto interés en asuntos políticos, y según Alexandrov, mostró un considerable apoyo a la revolución rusa de 1917. Emmy se sentía especialmente feliz por ver los avances soviéticos en los campos de la ciencia y las matemáticas, que consideraba indicativos de las nuevas oportunidades que brindaba el proyecto bolchevique. Esta actitud le trajo problemas en Alemania, culminando en el desalojo de la pensión donde vivía a causa de las protestas de los cabecillas estudiantiles que se quejaban por vivir con una "judía marxista".-[40]

Noether planeó volver a Moscú, un empeño en el que recibió el apoyo de Alexandrov. Después de que dejara Alemania en 1933, intentó obtener una cátedra en la Universidad Estatal de Moscú a través del Narkompros. Aunque su esfuerzo no tuvo éxito, mantuvo correspondencia frecuente durante los años 1930 y en 1935 hizo planes para volver a la Unión Soviética.[41]

Reconocimiento

En 1932 Emmy Noether y Emil Artin recibieron el Premio Ackermann-Teubner Memorial por su contribución a las matemáticas.[18]

Noether visitó Zúrich en 1932 para dirigirse al plenario del Congreso Internacional de Matemáticos.

Los colegas de Noether celebraron su cincuenta cumpleaños en 1932 al modo típico de los matemáticos: Helmut Hasse le dedicó un artículo en los Mathematische Annalen, donde confirmó su sospecha de que algunos aspectos de la álgebra no conmutativa son más simples que los de la conmutativa probando una ley de reciprocidad no conmutativa.[43]

En septiembre del mismo año Noether pronunció una alocución (großer Vortrag) al plenario del Congreso Internacional de Matemáticos de Zúrich sobre los "Sistemas hipercomplejos en sus relaciones con el álgebra conmutativa y la teoría de números". Al congreso asistieron ochocientas personas, entre ellas los colegas de Noether Hermann Weyl, Edmund Landau y Wolfgang Krull. Había cuatrocientos veinte participantes oficiales y se presentaron veintiuna alocuciones al plenario. Aparentemente, la posición prominente de Noether como conferenciante era un reconocimiento de la importancia de su contribución a la matemática. El congreso de 1932 se describe en ocasiones como el punto álgido de su carrera.[45]

Expulsión de Gotinga

Cuando Adolf Hitler se convirtió en Reichskanzler en enero de 1933, el activismo nazi en el país se incrementó dramáticamente. En la Universidad de Gotinga la Asociación de Estudiantes de Alemania llevó a cabo un ataque contra lo que para ellos suponía el "espíritu antialemán" y en ello fueron auxiliados por un privatdozent llamado Werner Weber, antiguo alumno de Emmy Noether. Las actitudes antisemitas crearon un clima hostil para los profesores judíos. Se recuerda la historia de un joven manifestante que entre sus demandas hablaba de que "los estudiantes arios querían matemáticos arios y no matemáticos judíos."[46]

Una de las primeras acciones del gobierno de Hitler fue la Ley para la Restauración del Servicio Civil Profesional que cesó de su puesto a los funcionarios judíos y políticamente sospechosos — a menos de que hubieran demostrado su lealtad a Alemania sirviendo en la primera guerra mundial. En abril de 1933 Noether recibió una notificación del Ministerio Prusiano de Ciencias, Arte y Educación pública que le comunicaba que "En base al párrafo 3 del Código del Servicio Civil del 7 de abril de 1933, por la presente le retiro el derecho de enseñar en la Universidad de Gotinga."[47]

Bryn Mawr

El Bryn Mawr College dio un hogar acogedor a Noether durante los dos últimos años de su vida.

Como docenas de profesores que se habían quedado sin empleo comenzaron a buscar puestos docentes fuera de Alemania, sus colegas de los Estados Unidos le buscaron asistencia y oportunidades laborales. Albert Einstein y Hermann Weyl fueron elegidos por el Instituto de Estudios Avanzados de Princeton mientras que otros trabajaron para encontrar el patrocinador que se precisaba en los trámites de inmigración. Noether fue contactada por representantes de dos instituciones educativas, el Bryn Mawr College en Estados Unidos y el Somerville College en la Universidad de Oxford, Inglaterra. Tras una serie de negociaciones con la fundación Rockefeller, se aprobó la concesión de una beca para Noether en Bryn Mawr y obtuvo un puesto allí, comenzando a finales de 1933.[48]

En Bryn Mawr, Noether conoció y trabó amistad con Anna Wheeler, quien había estudiado en Gotinga justo antes de que Noether llegara allí. Otra fuente de apoyo en el College fue la presidenta de Bryn Mawr, Marion Edwards Park, quien invitó con entusiasmo a los matemáticos locales para que vieran a la "Doctora Noether en acción".[50]

En 1934, Noether comenzó a dar clases en el Instituto de Estudios Avanzados de Princeton por invitación de Abraham Flexner y Oswald Veblen. También trabajó y supervisó a Abraham Albert y Harry Vandiver.[54]

Fallecimiento

Los restos mortales de Emmy Noether se encuentran en el pasaje que rodea el claustro de la Biblioteca M. Carey Thomas.

En abril de 1935 los médicos le descubrieron un tumor pélvico. Preocupados por las posibles complicaciones de la cirugía, le ordenaron dos días de reposo en cama antes de proceder a la intervención. Durante la misma descubrieron un quiste ovárico "del tamaño de un melón".[55]

Unos días después de la muerte de Noether, sus amigos y allegados en Bryan Mawr celebraron un servicio en su memoria en la President Park's house. Hermann Weyl y Richard Brauer viajaron desde Princeton y hablaron con Wheeler y Taussky sobre su colega desaparecida. En los meses que siguieron, comenzaron a aparecer homenajes por escrito por todo el mundo: Al de Albert Einstein se unió el de van der Waerden, Weyl y Pavel Alexandrov para presentar sus respetos. Su cuerpo fue incinerado y las cenizas enterradas en el claustro de la biblioteca M. Carey Thomas Library en Bryn Mawr.[56]

Other Languages
العربية: إيمي نويثر
asturianu: Emmy Noether
azərbaycanca: Emma Noter
беларуская: Эмі Нётэр
български: Еми Ньотер
català: Emmy Noether
čeština: Emmy Noetherová
Deutsch: Emmy Noether
Ελληνικά: Έμμυ Ναίτερ
English: Emmy Noether
Esperanto: Emmy Noether
euskara: Emmy Noether
فارسی: امی نوتر
français: Emmy Noether
galego: Emmy Noether
עברית: אמי נתר
Kreyòl ayisyen: Emmy Noether
magyar: Emmy Noether
Հայերեն: Էմմի Նյոթեր
Bahasa Indonesia: Emmy Noether
italiano: Emmy Noether
la .lojban.: emis.nyter
ქართული: ემი ნეთერი
한국어: 에미 뇌터
لۊری شومالی: ئمی نودئر
lietuvių: Emmy Noether
latviešu: Emmija Nētere
Malagasy: Emmy Noether
മലയാളം: എമ്മി നോതർ
Nederlands: Emmy Noether
norsk nynorsk: Emmy Noether
norsk bokmål: Emmy Noether
occitan: Emmy Noether
polski: Emmy Noether
Piemontèis: Emmy Noether
português: Emmy Noether
română: Emmy Noether
русский: Нётер, Эмми
srpskohrvatski / српскохрватски: Emmy Noether
slovenčina: Emmy Noetherová
slovenščina: Emmy Noether
српски / srpski: Еми Нетер
svenska: Emmy Noether
Türkçe: Emmy Noether
татарча/tatarça: Emmi Nöter
українська: Еммі Нетер
Tiếng Việt: Emmy Noether
Winaray: Emmy Noether